VIBRATION TRANSMITTER

 TR-27

 TR-27}

CERTIFIED ACCORDING TO ATEX 94/9/CE DIRECTIVE CERTIFIED IECEx

FUNCTION

The integrated transmitter TR-27 measures the absolute vibrations of any rotating machine support and it is able to interface directly in 2 wires technique (current loop $4 \div 20 \mathrm{~mA}$) to an acquisition system (PLC or DCS).
The transmitter is certified for application in classified area as:

《xx II 1 G Ex ia IIC T6, T5, T4 Ga (ATEX)

Ex ia IIC T6, T5, T4 Ga (IECEx)
The transmitter is certificate SIL 2 for functional safety

GENERAL DESCRIPTION

The transmitter, secured directly on machinery, generates an electric
signal $(4 \div 20 \mathrm{~mA})$ which is proportional respectively to vibration
velocity or acceleration. The transmitter is made of an AISI 316L steel body with machine connection thread; the connection to the acquisition system is effected by means of an integral cable.
It is available both a standard version (PVC shielded cable and nickel-plated brass cable gland) and a special version for aggressive environment (EFTE shielded armoured cable and AISI 316L steel cable gland).

NOTE: The transmitter is available in different configuration versions and does not need any set-up or maintenance.

TECHNICAL CHARACTERISTICS

Composition
Power supply
External connections

Environmental

Measure type

Dynamic field
Transverse sensitivity Linearity

Dynamic performances

Insulation

Application axis

Standard machine connection thread

Maintenance

Electrical connections

Parameters to be defined when ordering

Mounting torque

Certification available

- AISI 316L stainless steel integrated transmitter body
- $24 \mathrm{Vdc}(10 \div 35 \mathrm{Vdc}$) current loop $4 \div 20 \mathrm{~mA}$ (2 wires)
- Maximum load - see Figure 1
- Standard: PVC shielded cable with nickel-plated brass cable gland
- Special: EFTE shielded and armoured cable, with AISI 316L steel cable gland
- Transmitter $-60^{\circ} \mathrm{C} \div+120^{\circ} \mathrm{C}$
- IP 68 (submersible depth 70 mt)
- Standard cable: $-20^{\circ} \mathrm{C} \div+80^{\circ} \mathrm{C}$
- Special cable: $-60^{\circ} \mathrm{C} \div+150^{\circ} \mathrm{C}$ - resistance UV
- Omnidirectional seismic (absolute vibration)
- $\pm 18 \mathrm{~g}$
- $<5 \%$
- $\pm 2 \%-75 \mathrm{~Hz}$
- $\pm 3 \%$ / $10 \mathrm{~Hz}-1 \mathrm{kHz}$ - see Figure 2
- $-3 \mathrm{db} / 1,5 \mathrm{~Hz}-2 \mathrm{kHz}$
- $\geq 10^{8} \Omega$ between signal and case
- Any
- M8x1,25
- $1 / 4$ "-18NPT
- $1 / 4^{\prime \prime}-28 U N F$
- M6x1
- No maintenance is needed
- Bipolar shielded cable, conductors typical section $2 \times 1 \mathrm{~mm}^{2}$
- Measuring field - Machine connection thread
- Version - Cable length
- Certification
- $5 \div 10 \mathrm{~N}-\mathrm{m}$
- Ex Il 1 G Ex ia IIC T6, T5, T4 Ga (ATEX)
- Ex ia IIC T6, T5, T4 Ga (IECEx)

Figure 1
Maximum load on current loop

Figure 2
Frequency response [db]

ORDER INFORMATION

A: MEASURING FIELD

0	$0 \div 10 \mathrm{~mm} / \mathrm{s} \mathrm{RMS}$
1	$0 \div 20 \mathrm{~mm} / \mathrm{s} \mathrm{RMS}$
2	$0 \div 50 \mathrm{~mm} / \mathrm{s} \mathrm{RMS}$
3	$0 \div 100 \mathrm{~mm} / \mathrm{s} \mathrm{RMS}$
4	$0 \div 1 \mathrm{~g} \mathrm{RMS}$
5	$0 \div 5 \mathrm{~g} \mathrm{RMS}$
6	$0 \div 10 \mathrm{~g} \mathrm{RMS}$
7	$0 \div 25,4 \mathrm{~mm} / \mathrm{s}(0 \div 1 \mathrm{in} / \mathrm{s}) \mathrm{RMS}$
8	$0 \div 12,7 \mathrm{~mm} / \mathrm{s}(0 \div 0,5 \mathrm{in} / \mathrm{s}) \mathrm{RMS}$
S	special to be defined

B: MACHINE CONNECTION THREAD

0	M $8 \times 1,25$
1	$1 / 4^{\prime \prime}-18 N P T$
2	$1 / 4^{\prime \prime}-28$ UNF
3	M6x1 (only for non certificate version)

C: VERSION

\qquad
1 Special
D: CABLE LENGTH
XX length in meters

E: CERTIFICATIONS
0 standard

8 Ex II 1 G Ex ia IIC T6, T5, T4 Ga (ATEX) (only for special version) B Ex ia IIC T6, T5, T4 Ga (IECEx) (only for special version)

PURCHASE ORDER EXAMPLE:

TR - 27 / 1 / 0 / 1 / 05 / 8

$1=$ Measuring field $0 \div 20 \mathrm{~mm} / \mathrm{S}$ RMS
$0=$ Machine connection thread M8x1,25
$1=$ Special version
$05=$ Cable length 5 meters
$8=$ ATEX certification

B ALANCING MACHINES

CEMB S.p.A.
Via Risorgimento, 9 23826 MANDELLO DEL LARIO (LC) Italy www.cemb.com

Vibration analysis division:
phone +39 0341706111 fax $\quad+390341706299$ e-mail: stm@cemb.com

