

Emotron FlowDrive

Waste water pumping AC drive

Emotron FLD48/52/69, frame sizes B - F/F69 and C2 - F2

0.75 - 200 kW

Installation & Getting started instruction

Emotron FlowDrive Emotron FLD48/52/69, frame sizes B - F/F69 and C2 - F2 0.75 - 200 kW

Installation & getting started instruction.

Document number: 01-6142-01 Edition: r1 Date of release: 12-10-2016 © Copyright CG Drives & Automation Sweden AB 2015 - 2016 CG Drives & Automation Sweden AB retains the right to change specifications and illustrations in the text, without prior notification. The contents of this document may not be copied without the explicit permission of CG Drives & Automation Sweden AB.

Safety Instructions

Congratulations for choosing a product from CG Drives & Automation!

Before you begin with installation, commissioning or powering up the unit for the first time it is very important that you carefully study this Instruction manual. Following symbols can appear in this instruction or on the product itself. Always read these first before continuing.

NOTE: Additional information as an aid to avoid problems.

CAUTION!

Failure to follow these instructions can result in malfunction or damage to the AC drive.

Warning!

Failure to follow these instructions can result in serious injury to the user in addition to serious damage to the AC drive.

HOT SURFACE!

Failure to follow these instructions can result in injury to the user.

Handling the AC drive

Installation, commissioning, demounting, taking measurements, etc, of or on the AC drive may only be carried out by personnel technically qualified for the task. A number of national, regional and local regulations govern handling, storage and installation of the equipment. Always observe current rules and legislation.

Opening the AC drive

WARNING!

Always switch off the mains voltage before opening the AC drive and wait at least 7 minutes to allow the capacitors to discharge.

Always take adequate precautions before opening the AC drive. Although the connections for the control signals and the switches are isolated from the main voltage, do not touch the control board when the AC drive is switched on.

Precautions to be taken with a connected motor

If work must be carried out on a connected motor or on the driven machine, the mains voltage must always be disconnected from the AC drive first. Wait at least minutes before starting work.

Earthing

The AC drive must always be earthed via the mains safety earth connection.

Earth leakage current

This AC drive has an earth leakage current which does exceed 3.5 mA AC. Therefore the minimum size of the protective earth

conductor must comply with the local safety regulations for high leakage current equipment which means that according to the standard IEC61800-5-1 the protective earth connection must be assured by one of following conditions:

PE conductor cross-sectional area shall for phase cable size $\leq 16 \text{ mm}^2$ (6 AWG) be >10 mm² Cu (16 mm² Al) or use a second PE conductor with same area as original PE conductor.

For cable size above 16 mm² (6 AWG) but smaller or equal to $35mm^2$ (2 AWG) the PE conductor crosssectional area shall be at least $16mm^2$ (6 AWG). For cables >35 mm² (2 AWG) the PE conductor crosssectional area should be at least 50 % of the used phase conductor.

When the PE conductor in the used cable type is not in accordance with the above mentioned cross-sectional area requirements, a separate PE conductor should be used to establish this.

Residual current device (RCD) compatibility

This product cause a DC current in the protective conductor. Where a residual current device (RCD) is used for protection in case of direct or indirect contact, only a Type B RCD is allowed on the supply side of this product. Use RCD of 300 mA minimum.

EMC Regulations

In order to comply with the EMC Directive, it is absolutely necessary to follow the installation instructions. All installation descriptions in this manual follow the EMC Directive.

Mains voltage selection

The AC drive may be ordered for use with the mains voltage range listed below.

FLD48: 230-480 V FLD52: 440-525 V FLD69: 500-690 V

Voltage tests (Megger)

Do not carry out voltage tests (Megger) on the motor, before all the motor cables have been disconnected from the AC drive.

Condensation

If the AC drive is moved from a cold (storage) room to a room where it will be installed, condensation can occur. This can result in sensitive components becoming damp. Do not connect the mains voltage until all visible dampness has evaporated.

Incorrect connection

The AC drive is not protected against incorrect connection of the mains voltage, and in particular against connection of the mains voltage to the motor outlets U, V and W. The AC drive can be damaged in this way.

Power factor capacitors for improving

COSØ

Remove all capacitors from the motor and the motor outlet.

Precautions during Autoreset

When the automatic reset is active, the motor will restart automatically provided that the cause of the trip has been removed. If necessary take the appropriate precautions.

Transport

To avoid damage, keep the AC drive in its original packaging during transport. This packaging is specially designed to absorb shocks during transport.

IT Mains supply

The AC drives can be modified for an IT mains supply, (non-earthed neutral), please contact your supplier for details.

Alarms

Never disregard an alarm. Always check and remedy the cause of an alarm.

Heat warning

HOT SURFACE!

Be aware of specific parts on the AC drive having high temperature.

DC-link residual voltage

WARNING!

After switching off the mains supply, dangerous voltage can still be present in the AC drive. When opening the AC drive for installing and/or commissioning activities wait at least 7 minutes. In case of malfunction a

qualified technician should check the DC-link or wait for one hour before dismantling the AC drive for repair.

Contents

	Safety Instructions	1
	Contents	3
1.	Introduction	5
1.1 1.2 1.3 1.4 1.5 1.6 1.7	Delivery and unpacking Using of the instruction manual Warranty Type code number Standards Dismantling and scrapping Glossary	5 6 7 8 10 10
2.	Mounting	11
2.1 2.2	Lifting instructions Stand-alone units	11 11
3.	Installation	17
3.1 3.2 3.3	Before installation Cable connections Connection of motor and mains cables for larger frame sizes	17 18 23
3.4 3.5	Cable specifications Thermal protection on the motor	24 28
3.6	Motors in parallel	28
4.	Control Connections	29
4.1 4.2 4.3	Control board Terminal connections Inputs configuration	29 30
4.4	with the switches Connect control cables	31 31
4.5	Connecting options	38
5.	Getting Started	39
5.1 5.2 5.3 5.4 5.5 5.6 5.7	Function keys Basic configuration (all AC drives) Standalone / Master configuration Copy to follower Test run Engage "Auto Tune" program to optimize energy consumption Configuration of additional features (optional)	 39 40 41 43 44 44 45
6.	EMC and standards	47
6.1 6.2	EMC standards Stop categories and emergency stop	47 47
7.	Options	49
7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9	Options for the control panel Handheld Control Panel 2.0 Gland kits EmoSoftCom I/O Board PTC/PT100 RTC- Real time clock board Serial communication and fieldbus Standby supply board option	49 49 50 50 50 50 50 50 51

9.	Menu List	67
8.8	Control signals	65
8.7	Fuses and glands	62
8.6	Environmental conditions	61
8.5	Dimensions and Weights	60
8.4	Operation at higher switching frequency	59
8.3	Operation at higher temperatures	59
8.2	General electrical specifications	58
8.1	Electrical specifications related to model	55
8.	Technical Data	55
7.15	Other options	54
7.14	Top cover for IP20/21 version	54
7.13	Liquid cooling	54
7.12	Output chokes	54
7.11	EMC filter class C1/C2	54
7.10	Safe Stop option	51

1. Introduction

Emotron FlowDrive is an AC drive dedicated for controlling wastewater pumps with focus on continuous pumping with best economy (lowest cost).

FlowDrive can operate as a Standalone unit (1 drive) or in a Master-Follower configuration (2 drives)..

Prerequisites

In order to utilize the FlowDrive, following is required:

- Analog level sensor for automatic level control, preferably 4-20mA
- Master-Follower control cable (only required in a Master-Follower configuration)
- One switch per drive for manual control; Auto, forced run or off (optional but highly recommended)
- Digital switch for redundant overflow detection (optional, can be disabled)
- 1 pump per drive (if dual pumps are used, equal pump performance is required)

Several options are available, listed in chapter 7. page 49, that enable you to customize the AC drive for your specific needs.

NOTE: Read this instruction manual carefully before starting installation, connection or working with the AC drive.

Motors

The AC drive is suitable for use with standard 3-phase asynchronous motors. Under certain conditions it is possible to use other types of motors. Contact your supplier for details.

1.1 Delivery and unpacking

Check for any visible signs of damage. Inform your supplier immediately of any damage found. Do not install the AC drive if damage is found.

Check that all items are present and that the type number is correct.

1.2 Using of the instruction manual

Within this instruction manual the abbreviation "AC drive" is used to indicate the complete variable speed drive as a single unit.

Check that the software version number on the first page of this manual matches the software version in the AC drive. See Software instruction.

With help of the index and the table of contents it is easy to track individual functions and to find out how to use and set them.

This instruction can be put in a cabinet door, so that it is always easy to access in case of an emergency.

1.2.1 Instruction manuals for optional equipment

In the following table we have listed available options and the name of the Instruction manual or data sheet/ Instruction plus document number. Further in this main manual we are often referring to these instructions.

Table 1	Available	options	and	documents
100000 1	1 10 000000 00	000000		0000000000000000

Option	Valid instruction manual/ document number			
I/O board	I/O board 2.0, instruction manual / 01-5916-01			
PTC/PT100 board	PTC/PT100 board 2.0, instruction manual / 01-5920-01			
Fieldbus - Profibus				
Fieldbus - DeviceNet				
Ethernet - Modbus TCP	Fieldbus Option.			
Ethernet - EtherCAT	Instruction manual /			
Ethernet - Profinet IO 1-port	01-3698-01			
Ethernet - Profinet IO 2-port				
Ethernet - EtherNet/IP 2-port				
RS232/RS485 isolated	Emotron isolated RS232 / 485 2.0 option Instruction manual / 01-5919-01			
Control panel kit, Incl blank panel	Emotron FDU/VFX 2.0 External Control Panel,			
Control panel kit, Incl control panel	instruction manual / 01- 5928-01			
Handheld Control Panel HCP2.0	Emotron HCP 2.0, instrucion manual / 01- 5925-01			
Safe stop	Option Safe Stop (STO – Safe Torque Off), Technical description / 01-5921-01			

5

Table 1 Available options and documents

Option	Valid instruction manual/ document number
Overshoot clamp	Overshoot clamp Datasheet/Instruction / 01-5933-11
Liquid cooling	Emotron FDU/VFX 2.0 Liquid Cooling, instruction manual / 01-4636-01
Output choke	Output coils Datasheet/Instruction / 01-3132-11

1.3 Warranty

The warranty applies when the equipment is installed, operated and maintained according to instructions in this instruction manual. Duration of warranty as per contract. Faults that arise due to faulty installation or operation are not covered by the warranty.

1.4 Type code number

Fig. 1 gives an example of the type code numbering used on all AC drives. With this code number the exact type of the drive can be determined. This identification will be required for type specific information when mounting and installing. The code number is located on the product label, on the unit.

Type code	FLD	48	-017	-20	С	Ε	-	-	-	А	-	Ν	Ν	Ν	Ν	A	Ν	-	-
Position No	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19

Fig. 1	Type code	number
1 iz. 1	I ypt tout	numou

Position for 003-074	Position for 090-295	Configuration	
1	1	AC drive type	FLD =Flowdrive
2	2	Supply voltage	48=480 V mains 52=525 V mains 69=690 V mains
3	3	Rated current (A) continuous	-003=2.5 A - -250=295 A
4	4	Protection class	20=IP20 21=IP21 54=IP54
5	5	Control panel	-=Blank panel C=Standard panel
6	6	EMC option	E=Standard EMC (Category C3) F=Extended EMC (Category C2) I=IT-Net
7	7	Brake chopper option	-=No chopper B=Chopper built in D=DC+/- interface
8	8	Stand-by power supply option	-=No SBS S=SBS included
-	9	Safe stop option (Only valid for 090-3k0)	-=No safe stop T=Safe stop incl.
9	10	Brand label	A=Standard
10	-	Painted AC drive	A=Standard paint
11	11	Coated boards, option	- =Standard boards V=Coated boards
12	12	Option position 1	N=No option
13	13	Option position 2	P=PIC/PI100 (max. 1) I=Extended I/0 (max. 3)
14	14	Option position 3	S=Safe Stop (only 003-074/IP54) (max. 1) U=RTC-Real time clock (max 1)

7

Position for 003-074	Position for 090-295	Configuration	
15	15	Option position, communication	N=No option D=DeviceNet P=Profibus S=RS232/485 M=Modbus/TCP E=EtherCAT F=Modbus /TCP 2-port, M12 A=Profinet IO 1-port B=Profinet IO 2-port G=EtherNet/IP 2-port
16	16	Software type	A=Standard
17	-	Motor PTC. (Only valid for 003-074/IP54)	N=No option P=PTC
18	-	Gland kit. (Only valid for003-074/IP54)	 -=Glands not included G=Gland kit included
19	17	Approval/certification	-=CE approved D=Marine DNV Product certificate (above 100 kW) + CE approved M=Marine version + CE approved U=UL/cUL approved

1.5 Standards

The AC drives described in this instruction manual comply with the standards listed in Table 2. For the declarations of conformity and manufacturer's certificate, contact your supplier for more information or visit www.emotron.com/ www.cgglobal.com.

1.5.1 Product standard for EMC

Product standard EN(IEC)61800-3, second edition of 2004 defines the:

First Environment (Extended EMC) as environment that includes domestic premises. It also includes establishments directly connected without intermediate transformers to a low voltage power supply network that supplies buildings used for domestic purposes.

Category C2: Power Drive System (PDS) of rated voltage<1.000 V, which is neither a plug in device nor a movable device and, when used in the first environment, is intended to be installed and commissioned only by a professional.

Second environment (Standard EMC) includes all other establishments.

Category C3: PDS of rated voltage <1.000 V, intended for use in the second environment and not intended for use in the first environment.

Category C4: PDS or rated voltage equal or above 1.000 V, or rated current equal to or above 400 A, or intended for use in complex systems in the second environment.

The AC drive complies with the product standard EN(IEC) 61800-3:2004 (Any kind of metal screened cable may be used). The standard AC drive is designed to meet the requirements according to category C3.

By using the optional "Extended EMC" filter the AC drive fulfils requirements according to category C2,

WARNING!

In a domestic environment this product may cause radio interference, in which case it may be necessary to take adequate additional measures.

WARNING!

The standard AC drive, complying with category C3, is not intended to be used on a low-voltage public network which supplies domestic premises; radio interference is expected if used in such a network. Contact your supplier if you need additional measures.

8

Table 2 Standards

Market	Standard	Description				
	EMC Directive	2004/108/EC				
European	Low Voltage Directive	2006/95/EC				
	WEEE Directive	2002/96/EC				
	EN 60204-1	Safety of machinery - Electrical equipment of machines Part 1: General requirements.				
	EN(IEC)61800-3:2004	Adjustable speed electrical power drive systems Part 3: EMC requirements and specific test methods. EMC Directive: Declaration of Conformity and CE marking				
All	EN(IEC)61800-5-1 Ed. 2.0	Adjustable speed electrical power drive systems Part 5-1. Safety requirements - Electrical, thermal and energy. Low Voltage Directive: Declaration of Conformity and CE marking				
	IEC 60721-3-3	Classification of environmental conditions. Air quality chemical vapours, unit in operation. Chemical gases 3C2, Solid particles 3S2. Optional with coated boards Unit in operation. Chemical gases Class 3C3, Solid particles 3S2.				
	UL508C	UL Safety standard for Power Conversion Equipment				
	USL	USL (United States Standards - Listed) complying with the requirements of UL508C Power Conversion Equipment				
North & South America	UL 840	UL Safety standard for Power Conversion Equipment. Insulation coordination including clearances and creepage distances for electrical equipment.				
	CNL	CNL (Canadian National Standards - Listed) complying with the requirements of CAN/CSA C22.2 No. 14-10 Industrial Control Equipment.				
Russian	GOST R	For all sizes.				

1.6 Dismantling and scrapping

The enclosures of the drives are made from recyclable material as aluminium, iron and plastic. Each drive contains a number of components demanding special treatment, for example electrolytic capacitors. The circuit boards contain small amounts of tin and lead. Any local or national regulations in force for the disposal and recycling of these materials must be complied with.

1.6.1 Disposal of old electrical and electronic equipment

This symbol on the product or on its packaging indicates that this product shall be taken to the applicable collection point for the recycling of electrical and electronic equipment. By ensuring this product is disposed of correctly, you will help prevent potentially negative consequences for the environment and human health, which could otherwise be caused by inappropriate waste handling of this product. The recycling of materials will help to conserve natural resources. For more detailed information about recycling this product, please contact the local distributor of the product.

1.7 Glossary

1.7.1 Abbreviations and symbols

In this manual the following abbreviations are used:

Table 3	Abbreviations
Table 3	Abbreviations

Abbreviation/ symbol	Description
DSP	Digital signals processor
AC drive	Frequency converter
IGBT	Insulated Gate Bipolar Transistor
СР	Control panel, the programming and presentation unit on the AC drive
HCP	Handheld control panel (option)
Elnt	Communication format
UInt	Communication format (Unsigned integer)
Int	Communication format (Integer)
Long	Communication format
SELV	Safety Extra Low Voltage
	The function cannot be changed in run mode

1.7.2 Definitions

In this manual the following definitions for current, torque and frequency are used:

Table 4	Definitions

Name	Description	Quantity			
I _{IN}	Nominal input current of AC drive	A _{RMS}			
I _{NOM}	Nominal output current of AC drive	A _{RMS}			
I _{MOT}	Nominal motor current	A _{RMS}			
P _{NOM}	Nominal power of AC drive	kW			
P _{MOT}	Motor power	kW			
T _{NOM}	NOM Nominal torque of motor				
T _{MOT}	Motor torque	Nm			
f _{OUT}	Output frequency of AC drive	Hz			
f _{MOT}	Nominal frequency of motor	Hz			
n _{MOT}	Nominal speed of motor	rpm			
I _{CL}	Maximum output current	A _{RMS}			
Speed	Actual motor speed	rpm			
Torque	Actual motor torque	Nm			
Sync speed	Synchronous speed of the motor	rpm			

2. Mounting

This chapter describes how to mount the AC drive.

Before mounting it is recommended that the installation is planned out first.

- Be sure that the AC drive suits the mounting location.
- The mounting site must support the weight of the AC drive.
- Will the AC drive continuously withstand vibrations and/or shocks?
- Consider using a vibration damper.
- Check ambient conditions, ratings, required cooling air flow, compatibility of the motor, etc.
- Know how the AC drive will be lifted and transported.

2.1 Lifting instructions

Note: To prevent personal risks and any damage to the unit during lifting, it is advised that the lifting methods described below are used.

Recommended for AC drive models -090 to -295

Fig. 2 Lifting AC drive model -090 to -250

2.2 Stand-alone units

The AC drive must be mounted in a vertical position against a flat surface. Use the template (in the File archive on our homepage) to mark out the position of the fixing holes.

Fig. 3 AC drive mounting model 003 to 293

2.2.1 Cooling

Fig. 3 shows the minimum free space required around the AC drive for the models 003 to 295 in order to guarantee adequate cooling. Because the fans blow the air from the bottom to the top it is advisable not to position an air inlet immediately above an air outlet.

The following minimum separation between two AC drives, or a AC drive and a non-dissipating wall must be maintained. Valid if free space on opposite side.

Table 5 Mounting and cooling

			Frame size C2, D2, E2, F2 with IP21
		[mm(in)]	[mm(in)]
	а	200(7.9)	200(7.9)
FLD - FLD,	b	200(7.9)	200(7.9)
mm (in)	С	0	50(1.97)
	d	0	50(1.97)
	а	100(3.9)	100(3.9)
one side mm (in)	b	100(3.9)	100(3.9)
	С	0	50(1.97)
	d	0	50(1.97)

2.2.2 Mounting schemes

Fig. 4 Emotron FLD Model 48/52-003 to 018 (Frame size B)

Glands M20

Gland M16

Gland M25

Emotron FLDModel 48/52-003 to 018 (Frame size B) example with optional CRIO interface and D-sub Fig. 6 connectors.

Frame	Emotron FLD			Dimer	nsions in mm	(in)		
size	model	A	В	С	D	E	F	G
В	003 - 018	416 (16.4)	396 (15.6)	128.5 (5.04)	37 (1.46)	10 (0.39)	202.6 (7.98)	200 (7.9)

Table 6 Dimensions connected to Fig. 4.

Fig. 7 Emotron FLD Model 48/52-026 to 046 (Frame size C)

Fig. 8 Cable interface for mains, motor and communication, Emotron FLD Model 48/52-026 to 046 (Frame size C)

Fig. 9 Emotron FLD Model 48-025 to 48-058 (Frame size C2), backside view.

Fig. 10 Bottom view Emotron FLD Model 48-025 to 48-058 (Frame size C2), with cable interface for mains, motor, DC+/DC-, brake resistor and control

Frame	Emotron FLD		Dimensions in mm (in)												
size	model	A	В	С	D	E	F	G	н	I	J	к			
С	026 - 046	512 (20.2)	492 (19.4)	128.5 (5.04)	24.8 (0.95)	10 (0.39)	178 (7)	292 (11.5)	-	-	-	-			
C2	025 - 058	585.5 (23)	471 (18.5)	128.5 (5.04)	23.8 (0.91)	13 (0.51)	167 (7)	267 (10.5) IP21 282 (11.1)	196 (7.7)	10 (0.39)	23.5 (0.9)	496 (19.5)			

Fig. 11 Emotron FLD Model 48/52-061 and 074 (Frame size D)

Fig. 12 Cable interface for mains, motor and communication, Emotron FLD Model 48/52-061 and 074 (Frame size D).

NOTE: Glands for size B, C and D are available as option kit.

Table	8 Dimensions	connected to	Fig.	11	and Fig.	13.

Fig. 13 Emotron FLDModel 48-072 to 48-088 (Frame size D2), backside view.

Fig. 14 Bottom view Emotron FLD Model 48-072 to 48-088 (Size D2), with cable interface for mains, motor, DC+/DC-, brake resistor and control.

Frame	Emotron FLD		Dimensions in mm (in)												
size	model	A	В	C	D	E	F	G	н	I	ſ	к			
D	061 - 074	570 (22.4)	590 (23.2)	160 (6.3)	30 (0.9)	10 (0.39)	220 (8.7)	295 (11.6)	-	-	-	-			
D2	072 - 088	570 (22.4)	669.5 (26.3)	160 (6.3)	30 (0.9)	13 (0.51)	220 (8.7)	291 (11.5) IP21 - 307 (12.1)	240 (9.5)	10 (0.39)	12.5 (0.47)	590 (23.2)			

Fig. 15 Emotron FLD Model 48-090 to 175 (Frame size E).

Fig. 16 Cable interface for mains, motor, DC+/DC-, brake resistor and communication, Emotron FLD Model 48-090 to 175 (Frame size E).

	Ø16 mm(x3) (0.63 in)
A	, , В
	ø9 mm(x6)
74 kg	(0.35 in) G
74 kg (163 lb)	F G

D

E

С

0

Н

Fig. 17 Emotron FLD Model 48-210 to 295 (Frame size F) Emotron FLD Model 69-090 to 200 (Frame size F69).

Fig. 18 Cable interface for mains, motor, DC+/DC-, brake resistor and communication, Emotron FLD Model 48-210 to 295 Emotron FLD Model 69-090 to 200.

Frame	Emotron FLD	Dimension in mm (in)										
size	model	Α	В	C	D	E	F	G	н			
E	090 - 175	925 (36.4)	952.5 (37.5)	240 (9.5)	22.5 (0.88)	10 (0.39)	284.5 (11.2)	314 (12.4)	120			
F	210 - 295	925 (36.4)	950 (37.4)	300	22.5	10	344.5	314	150			
F69	090 - 200	1065 (41.9)	1090 (42.9)	(11.8)	(0.88)	(0.39)	(13.6)	(12.4)	130			

Table 9Dimensions connected to Fig. 15 and Fig. 17.

Fig. 19 Emotron FLD Model 48-106 to 48-171 (Frame size E2).

Fig. 20 Bottom view Emotron FLD Model 48-106 to 48-293 (Frame size E2 and F2), with cable interface for mains, motor, DC+/DC-, brake resistor and control. (principle drawing)

Table 10 Dimensions connected to Fig. 19 and Fig. 21.

Frame	Emotron FLD		Dimension in mm (in)								
size	model	Α	В	С	D	E	F	G	н		
E2	106 - 171	925	950	240 (9.5)	22.5	10	275 (10.8)	294 (11.6) IP21 - 323 (12.7)	120 (4.7)		
F2	205 - 293	(36.4)	(37.4)	300 (11.8)	(0.88)	(0.39)	335 (13.2)	314 (12.4) IP21 - 323 (12.7)	150 (5.9)		

Fig. 21 Emotron FLD Model 48-205 to 48-293 (Frame size F2).

3. Installation

The description of installation in this chapter complies with the EMC standards and the Machine Directive.

Select cable type and screening according to the EMC requirements valid for the environment where the AC drive is installed.

3.1 Before installation

Read the following checklist and prepare for your application before installation.

- Local or remote control.
- Long motor cables (>100m (> 330 ft)), refer to section Long motor cables page 22.
- Functions used.
- Suitable AC drive size in proportion to the motor/application.

If the AC drive is temporarily stored before being connected, please check the technical data for environmental conditions. If the AC drive is moved from a cold storage room to the room where it is to be installed, condensation can form on it. Allow the AC drive to become fully acclimatised and wait until any visible condensation has evaporated before connecting the mains voltage.

3.1.1 Remove/open front cover

Frame sizes B - F (IP54)

Remove/open the front cover to access the cable connections and terminals. On Frame size B and C loosen the 4 screws and remove the cover. On Frame size D and up unlock the hinged cover with the key and open it.

Frame size C2 - F2 (IP20/21)

Fig. 22 Remove the front cover on frame size C2 - F2 (principle drawing).

To be able to access all cable connections and terminals, first open and remove the front cover in following order.

- Loosen the two screws A (see Fig. 22) at the bottom of the cover a couple of turns (you do not have to remove the screws).
- Swing out the lower part of the cover a bit and remove the cover downwards. Be careful, don't swing out the cover too much as this could damage the "lips" at the upper hinges.

Now it is easy to access all terminals.

3.1.2 Remove/open the lower front cover on Frame size E2 and F2 (IP20/21)

Fig. 23 Loosen the two screws and remove the lower cover (principle drawing)

In order to access the mains, motor, DC+/DC- and brake terminals, remove the lower cover in following order

- Loosen the two screws B (see Fig. 23).
- Pull down the cover a bit and lift it away.

3.2 Cable connections

IP54-FLD48/52-003 to 074 (Frame sizes B, C and D) IP20/21 - FLD48 025 to 293 (Frame sizes C2,D2,E2 and F2).

3.2.1 Mains cables

Dimension the mains and motor cables according to local regulations. The cable must be able to carry the AC drive load current.

Recommendations for selecting mains cables

- To fulfil EMC purposes it is not necessary to use screened mains cables.
- Use heat-resistant cables, +60 °C (140 °F) or higher.
- Dimension the cables and fuses in accordance with local regulations and the nominal current of the motor. See table 32, page 62.
- PE conductor cross-sectional area shall for cable size ≤ 16mm² (6 AWG) be equal to the used phase conductors, for cable size above 16mm² (6 AWG) but smaller or equal to 35mm² (2 AWG) the PE conductor cross-sectional area shall be at least 16mm² (6 AWG). For cables >35mm² (>2 AWG) the PE conductor cross-sectional area should be at least 50% of the used phase conductor.

When the PE conductor in the used cable type is not in accordance with the above mentioned cross-sectional area requirements, a separate PE conductor should be used to establish this.

• The litz ground connection see fig. 33, is only necessary if the mounting plate is painted. All the AC drives have an unpainted back side and are therefore suitable for mounting on an unpainted mounting plate.

Connect the mains cables according to fig. 24 to 30. The AC drive has as standard a built-in RFI mains filter that complies with category C3 which suits the Second Environment standard.

Fig. 24 Mains and motor connections, model 003-018, frame size B

Fig. 25 Mains and motor connections, model 026-046, frame size C

Fig. 26 Mains and motor connections model 48-025 to 48-058, frame size C2.

Fig. 27 Mains and motor connection, model 061 - 074, frame size D.

Fig. 28 Mains and motor connections model 48-072 to 48-105, frame size D2.

Fig. 29 Mains and motor connections model 48-142 to 48-293 (Size E2 and F2) (principle drawing).

Fig. 30 Mains and motor connections model 48-142 to 48-293 (Size E2 and F2) with the optional terminals for DC-,DC+ and Brake (principle drawing)

Table 11 Mains and motor connections

L1,L2,L3 PE	Mains supply, 3 -phase Safety earth (protected earth)
<u> </u>	Motor earth Motor output, 3-phase
DC-,DC+,R	Brake resistor, DC-link connections (optional)

Fig. 31 Wiring example showing Protective earth, Motor earth and Brake Resistor connection

NOTE: The Brake and DC-link Terminals are only fitted if the DC+/DC- option or Brake Chopper Option is built-in.

WARNING!

The Brake Resistor must be connected between terminals DC+ and R.

WARNING!

In order to work safely, the mains earth must be connected to PE and the motor earth to

3.2.2 Motor cables

To comply with the EMC emission standards the AC drive is provided with a RFI mains filter. The motor cables must also be screened and connected on both sides. In this way a so-called "Faraday cage" is created around the AC drive, motor cables and motor. The RFI currents are now fed back to their source (the IGBTs) so the system stays within the emission levels.

Recommendations for selecting motor cables

- Use screened cables according to specification in table 12. Use symmetrical shielded cable; three phase conductors and a concentric or otherwise symmetrically constructed PE conductor, and a shield.
- PE conductor cross-sectional area shall for phase cable size < 16 mm2 (6 AWG) be >10 mm2 Cu (16 mm2 Al) or use a second PE conductor with same area as original PE conductor.

For cable size above 16mm2 (6 AWG) but smaller or equal to 35mm2 (2 AWG) the PE conductor crosssectional area shall be at least 16mm² (6 AWG). For cables >35mm² (2 AWG) the PE conductor crosssectional area should be at least 50% of the used phase conductor.

When the PE conductor in the used cable type is not in accordance with the above mentioned cross-sectional area requirements, a separate PE conductor should be used to establish this.

- Use heat-resistant cables, +60 °C (140 °F) or higher.
- Dimension the cables and fuses in accordance with the nominal output current of the motor. See table 32, page 62.
- Keep the motor cable between AC drive and motor as short as possible.
- The screening must be connected with a large contact surface of preferable 360° and always at both ends, to the motor housing and the AC drive housing. When painted mounting plates are used, do not be afraid to scrape away the paint to obtain as large contact surface as possible at all mounting points for items such as saddles and the bare cable screening. Relying just on the

connection made by the screw thread is not sufficient.

NOTE: It is important that the motor housing has the same earth potential as the other parts of the machine.

• The litz ground connection, see fig. 33, is only necessary if the mounting plate is painted. All the AC drives have an unpainted back side and are therefore suitable for mounting on an unpainted mounting plate.

Connect the motor cables according to U - U, V - V and W - W, see Fig. 24, to Fig. 30 .

NOTE: The terminals DC-, DC+ and R are options.

Switches between the motor and the AC drive

If the motor cables are to be interrupted by maintenance switches, output coils, etc., it is necessary that the screening is continued by using metal housing, metal mounting plates, etc. as shown in the Fig. 33.

Fig. 32 Screen connection of cables.

Pay special attention to the following points:

- If paint must be removed, steps must be taken to prevent subsequent corrosion. Repaint after making connections!
- The fastening of the whole AC drive housing must be electrically connected with the mounting plate over an area which is as large as possible. For this purpose the removal of paint is necessary. An alternative method is to connect the AC drive housing to the mounting plate with as short a length of litz wire as possible.
- Try to avoid interruptions in the screening wherever possible.
- If the AC drive is mounted in a standard cabinet, the internal wiring must comply with the EMC standard. Fig. 33 shows an example of a AC drive built into a cabinet.

Fig. 33 AC drive in a cabinet on a mounting plate

Fig. 34 shows an example when there is no metal mounting plate used (e.g. if IP54 AC drives are used). It is important to keep the "circuit" closed, by using metal housing and cable glands.

Fig. 34 AC drive as stand alone

Connect motor cables

- 1. Remove the cable interface plate from the AC drive housing.
- 2. Put the cables through the glands.
- 3. Strip the cable according to Table 13.
- 4. Connect the stripped cables to the respective motor terminal.
- 5. Put the cable interface plate in place and secure with the fixing screws.
- 6. Tighten the EMC gland with good electrical contact to the motor and brake chopper cable screens.

Placing of motor cables

Keep the motor cables as far away from other cables as possible, especially from control signals. The minimum distance between motor cables and control cables is 300 mm (12 in).

Avoid placing the motor cables in parallel with other cables.

The power cables should cross other cables at an angle of 90° .

Long motor cables

If the connection to the motor is longer than 100 m (330 ft)(for powers below 7.5 kW (10.2 hp) please contact CG Drives & Automation), it is possible that capacitive current peaks will cause tripping at overcurrent. Using output coils can prevent this. Contact the supplier for appropriate coils.

Switching in motor cables

Switching in the motor connections is not advisable. In the event that it cannot be avoided (e.g. emergency or maintenance switches) only switch if the current is zero. If this is not done, the AC drive can trip as a result of current peaks.

3.3 Connection of motor and mains cables for larger frame sizes

IP54 - FLD 48-090 to 295 (Frame sizes E - F) and FLD 69-090 to 200 (Frame size F69)

Emotron FLD48-090 and up, Emotron FLD69-090 and up

To simplify the connection of thick motor and mains cables to the AC drive, the cable interface plate can be removed.

Fig. 35 Connecting motor and mains cables.

- 1. Remove the cable interface plate from the AC drive housing.
- 2. Put the cables through the glands.
- 3. Strip the cable according to Table 13.
- 4. Connect the stripped cables to the respective mains/ motor terminal.
- 5. Fix the clamps on appropriate place and tighten the cable in the clamp with good electrical contact to the cable screen.

6. Put the cable interface plate in place and secure with the fixing screws.

3.4 Cable specifications

Cable	Cable specification
Mains	Power cable suitable for fixed installation for the voltage used.
Motor	Symmetrical three conductor cable with concentric protection (PE) wire or a four conductor cable with compact low-impedance concentric shield for the voltage used.
Control	Control cable with low-impedance shield, screened.

3.4.1 Stripping lengths

Fig. 3.4.2 indicates the recommended stripping lengths for motor and mains cables.

Fig. 36 Stripping lengths for cables

	Mains c		cable	able Motor cable			Brake cable			Earth cable			
Model	Frame size	a mm (in)	b mm (in)	a mm (in)	b mm (in)	c mm (in)	a mm (in)	b mm (in)	c mm (in)	a mm (in)	b mm (in)		
FLD##003 - 018	В	90 (3.5)	10 (0.4)	90 (3.5)	10 (0.4)	20 (0.8)	90 (3.5)	10 (0.4)	20 (0.8)	90 (3.5)	10 (0.4)		
FLD##026 - 046	С	150 (5.9)	14 (0.2)	150 (5.9)	14 (0.2)	20 (0.8)	150 (5.9)	14 (0.2)	20 (0.8)	150 (5.9)	14 (0.2)		
FLD48-025 - 058	C2	65 (2.7)	18 (0.7)	65 (2.7)	18 (0.7)	36 (1.4)	65 (2.7)	18 (0.7)	36 (1.4)	65 (2.7)	M6 screw*		
FLD##061 - 074	D	110 (4.3)	17 (0.7)	110 (4.3)	17 (0.7)	34 (1.4)	110 (4.3)	17 (0.7)	34 (1.4)	110 (4.3)	17 (0.7)		
FLD48-072 - 105	D2	92 (3.6)	18 (0.7)	92 (3.6)	18 (0.7)	36 (1.4)	92 (3.6)	18 (0.7)	36 (1.4)	92 (3.6)	M6 screw*		
FLD##090 - 175	Е	173	25 (1)	173	25 (1)	41	173		41	173	25 (1)		
FLD48-142 - 171	E2	(6.8)	23(1)	(6.8)	23(1)	(1.6)	(6.8)		(1.6)	(6.8)	40 (1.6)**		
FLD48-205 - 293	F2		32		32	46		25 (1)	46		32 (1.3)		
FLD48-210 - 295 FLD69-090 - 200	F	178 (7)	178 (7)	178 (7)	(1.3)	178 (7)	(1.3)	(1.8)	178 (7)		(1.8)	178 (7)	40 (1.6)**

Table 13 Stripping lengths for mains, motor, brake and earth cables

* With cable shoe for M6 screw

**Valid when brake chopper electronics are built in

3.4.2 Fuse data

Please refer to the chapter Technical data, section 8.7, page 62.

3.4.3 Cable connection data for mains, motor and PE cables according to IEC ratings

NOTE: The dimensions of the power terminals used in the cabinet drive models 300 to 3K0 can differ depending on customer specification.

		Cable cross section connector range							
Model	Frame	Mains and motor		Bra	ke	F	ΡE	Cable type	
Woder	size	Cable area mm ²	Tightening torque Nm	Cable area mm ²	Tightening torque Nm	Cable area mm ²	Tightening torque Nm		
FLD##-003									
FLD##-004									
FLD##-006									
FLD##-008	В	0.5 - 10	1.2-1.4	0.5 - 10	1.2-1.4	1.5 - 16	2.6		
FLD##-010									
FLD##-013									
FLD##-018									
FLD48-025									
FLD48-030									
FLD48-036	36 C2	C2 4 - 25		2	4 - 25	2	4 - 25 *	4.3	
FLD48-045									
FLD48-058									
FLD##-026		0540		0 5 4 6					
FLD##-031	с	C stranded	d 1.2-1.4 Ilid	stranded 2.5-25 solid	1.2-1.4	6-16 stranded 6-25 solid	1.2-1.4	Copper (Cu)	
FLD##-037	Ŭ	2.5-25 solid						75°C	
FLD##-046									
FLD48-072	D2	0.75 - 50	3.3	0.75 - 50	3.3				
FLD48-088	D2	16 - 50	7.9	16 - 50	7.9	10 - 70*	4.3		
FLD48-105									
FLD##-061	_	10-35		10-35		16-35			
FLD##-074	D	stranded 10-50 solid	2.8-3	stranded 10-50 solid	2.8-3	stranded 16-50 solid	2.8-3		
FLD48-142	E0						31 (for		
FLD48-171			31 (for		$31 (for 16.34 mm^2)$	16 150	16-34 mm ²)		
FLD48-090			16-34 mm ²)		10-34 (((()-)	10-130	42 (for		
FLD48-109		16- 150	12 (for	16 - 120	42 (for		35-150 mm ²)		
FLD48-146	E		4∠ (101 35-150 mm ²)		35-120	16 - 185 **			
FLD48-175					mm ⁻)		10 **		

Table 14 Cable connector range and tightening torque for Emotron FLD48 and FLD52, according to IEC ratings.

Table 14	Cable connector range	and tightening torqu	e for Emotron FLD48 an	nd FLD52, according to IEC ra	ıtings.
----------	-----------------------	----------------------	------------------------	-------------------------------	---------

		Cable cross section connector range						
Model	Frame		Mains and motor		Brake		PE	
size		Cable area mm ²	Tightening torque Nm	Cable area mm ²	Tightening torque Nm	Cable area mm ²	Cable area mm ² Nm	
FLD48-205	E2		31 (for				31 (for	
FLD48-244	ΓZ		25-34 mm ²)		21 /for		25-34 mm ²)	
FLD48-210					$31 (for 16-34 \text{ mm}^2)$	25 - 240	42 (for	
FLD48-228		25 240	42 (for $25, 152, mm^2$)	16 150			35-152 mm ²)	Copper (Cu)
FLD48-250	-	25-240	55-152 mm)	10 - 150	42 (for			75°C
FLD48-295	Г		56 (for 153-240 mm ²)		35-150 mm ²)	16 - 185 **	56 (for 153-240 mm ²) 10 **	

* = With cable shoe for M6 screw.

**= Valid when brake chopper electronics are built in.

 Table 15
 Cable connector range and tightening torque for Emotron FLD69, according to IEC ratings.

		Cable cross section connector range													
Model Frame		Mains and motor		Brake		PE		Cable							
	5126	Cable area mm ²	Tightening torque Nm	Cable area mm ²	Tightening torque Nm	Cable area mm ²	Tightening torque Nm	type							
FLD69-090							31 (for								
FLD69-109			31 (for		31 (for		16 - 34 mm ²)								
FLD69-146			16 - 34 mm ²)		16 - 34 mm ²)	16 - 150	42 (for	Copper							
FLD69-175	F69	16 - 150	10 (for	10 (for	10 (for	12 (for	10 (for	10 (for	10 (for	10 (for	16 - 120	12 (for		35-150 mm ²)	(Cu) 75°C
FLD69-200			35-150 mm ²)		35-120 mm ²)	16 - 185 **									
							10 **								

3.4.4 Cable connection data for mains, motor and PE cables according to NEMA ratings

List of cable cross section connector range with minimum required AWG cable cross section which fits to the terminals according to UL-requirements.

		Cable cross section connector range						
Madal	Frame	Mains an	d motor	Bra	ke	PE		Cable
Widdei	size	Cable range AWG	Tightening torque Lb-In	Cable range AWG	Tightening torque Lb-In	Cable range AWG	Tightening torque Lb-In	type
FLD##-003								
FLD##-004								
FLD##-006								
FLD##-008	В	20 - 6	11.5	20 - 6	11.5	20 - 6	23	
FLD##-010								
FLD##-013								
FLD##-018								
FLD48-025								
FLD48-030								
FLD48-036	C2	12 - 4	18	12 - 4	18	12 - 4*	38	
FLD48-045								
FLD48-058								
FLD##-026								
FLD##-031		10 1	10 6 10 2	10 /	10 6 10 2	10 /	10 6 10 2	
FLD##-037		18 - 4	10.6-12.3	18-4	10.6-12.3	18 - 4	10.6-12.3	
FLD##-046								
FLD48-072	D2	10 - 0	30 - 50	10 - 0	30 - 50			
FLD48-088	D0	2.2/0	70	2.2/0	70	8 - 2/0*	38	
FLD48-105		3-2/0	70	3-2/0	70			Copper(Cu)
FLD##-061		10 0	04 0 00 1	10 0	04 0 00 4	10 0	04 0 00 4	15 0
FLD##-074		10 - 01	24.3-26.1	10 - 01	24.3-26.1	10-01	24.3-26.1	
FLD48-142	50						275 (for	
FLD48-171	E2		275 (for		275 (for		AWG 6-2)	
FLD48-090			AWG 6 - 2)		AWG 6 - 2)	6 - 300 kcmil	375 (for	
FLD48-109	-	6 - 300 kcmil	375 (for	6 - 250 kcmil			AWG 1-	
FLD48-146	E		AWG 1 -		375 (for AWG		300Kcmil)	
FLD48-175			300Kcmil)		1-230(((((()))))))	6 - 2/0**	88**	
FLD48-205							275 (for	
FLD48-244	F2		275 (for				AWG 4 - 2)	
FLD48-293			AWG 4 - 2)				375 (for	
FLD48-210			075 (G. ANNO		275 (for	4 - 500 kcmil	AWG 1 -	
FLD48-228	-	4 - 500 kcmil	375 (for AWG	6 - 300 kcmil	AWG 6 - 2)		300 kcmil)	
FLD48-250		7 000 Nomin			375 (for AWG		EOO (fee	
FLD48-295	F		500 (for AWG 350 -500 kcmil)		1 -300Kcmil)	6 - 2/0**	500 (for AWG 350 - 500 kcmil) 88**	

Table 16 Cable connector range and tightening torque for Emotron FLD48 and FLD52, according to NEMA ratings

* = With cable shoe for M6 screw.

**= Valid when brake chopper electronics are built in.

3.5 Thermal protection on the motor

Standard motors are normally fitted with an internal fan. The cooling capacity of this built-in fan is dependent on the frequency of the motor. At low frequency, the cooling capacity will be insufficient for nominal loads. Please contact the motor supplier for the cooling characteristics of the motor at lower frequency.

WARNING!

Depending on the cooling characteristics of the motor, the application, the speed and the load, it may be necessary to use forced cooling on the motor.

Motor thermistors offer better thermal protection for the motor. Depending on the type of motor thermistor fitted, the optional PTC input may be used. The motor thermistor gives a thermal protection independent of the speed of the motor, thus of the speed of the motor fan. See the functions, Motor I^2t type [231] and Motor I^2t current [232].

3.6 Motors in parallel

t is possible to have motors in parallel as long as the total current does not exceed the nominal value of the AC drive. The following has to be taken into account when setting the motor data:

Menu [221] Motor Voltage:	The motors in parallel must have the same motor voltage.
Menu [222] Motor Frequency:	The motors in parallel must have the same motor frequency.
Menu [223] Motor Power:	Add the motor power values for the motors in parallel.
Menu [224] Motor Current:	Add the current for the motors in parallel.
Menu [225] Motor Speed:	Set the average speed for the motors in parallel.
Menu [227] Motor Cos PHI:	Set the average Cos PHI value for the motors in parallel.

Control Connections 4.

4.1 **Control board**

Fig. 37 shows the layout of the control board which is where the parts most important to the user are located. Although the control board is galvanically isolated from the mains, for safety reasons do not make changes while the mains supply is on!

WARNING!

Always switch off the mains voltage and wait at least 7 minutes to allow the DC capacitors to discharge before connecting the control signals or changing position of any switches. If the

option External supply is used, switch of the mains to the option. This is done to prevent damage on the control board.

Fig. 37 Control board layout

4.2 Terminal connections

The terminal strip for connecting the control signals is accessible after opening the front panel.

The table describes the default functions for the signals. The inputs and outputs are programmable for other functions as described in the separate Software instruction. For signal specifications refer to chapter 8. page 55.

NOTE: The maximum total combined current for outputs 11, 20 and 21 is 100mA.

NOTE: It is possible to use external 24V DC if connection to Common (15).

Table 17 Control signals

Terminal	Name	Function (Default)
Outputs		
1	+10 V	+10 VDC supply voltage
6	-10 V	
7	Common	Signal ground
11	+24 V	+24 VDC supply voltage
12	Common	
15	Common	
Digital input	6	
8	DigIn 1	Auto run
9	DigIn 2	Forced run
10	DigIn 3	FlowLinkIn
16	DigIn 4	Off
17	DigIn 5	Off
18	DigIn 6	Overflow level switch (optional)
19	Digln 7	Off
22	Digln 8	Reset
Digital outpu	its	
20	DigOut 1	
21	DigOut 2	FlowLinkOut
Analogue inp	outs	
2	AnIn 1	Level sensor
3	AnIn 2	Off
4	AnIn 3	Off
5	Anln 4	Off
Analogue ou	tputs	
13	AnOut 1	
14	AnOut 2	

Table 17 Control signals

Terminal	Name	Function (Default)
Relay output	s	
31	N/C 1	Relay 1 output
32	COM 1	Trip, active when the AC drive is
33	N/0 1	in a TRIP condition.
41	N/C 2	Relay 2 output
42	COM 2	Run, active when the AC drive is started, also active during sleep
43	N/0 2	mode.
51	COM 3	Relay 3 output
52	N/0 3	Off

NOTE: N/C is opened when the relay is active and N/O is closed when the relay is active.

NOTE! Using potentiometer for reference signal to Analogue input: Possible potentiometer value in range of 1 k Ω to 10 k Ω (¼ Watt) linear, where we advice to use a linear 1 k Ω / ¼ W type potentiometer for best control linearity.

WARNING!

The relay terminals 31-52 are single isolated. Do NOT mix SELV voltage with e.g. 230 VAC on these terminals. A solution when dealing with mixed SELV/system voltage signals is to install an additional I/O board option (see chapter 7.5 page 50) and connect all SELV voltage signals to the relay terminals of this option board while connecting all 230VAC signals to the power board relay terminals 31 - 52.

4.3 Inputs configuration with the switches

The switches S1 to S4 are used to set the input configuration for the 4 analogue inputs AnIn1, AnIn2, AnIn3 and AnIn4 as described in table 18. See Fig. 37 for the location of the switches.

Table	18	Switch	settings
-------	----	--------	----------

Input	Signal type	Switch
Anin1	Voltage	S1 I U
	Current (default)	S1 I U
Anin2	Voltage	S2 I U
/	Current (default)	S2 I U
AnIn3	Voltage	S3 I U
	Current (default)	S3 I U
Anin4	Voltage	S4 I U
	Current (default)	S4 I U

NOTE: Scaling and offset of AnIn1 - AnIn4 can be configured using the software. See menus [512], [515], [518] and [51B] in the separate Software instruction.

NOTE: the 2 analogue outputs AnOut 1 and AnOut 2 can be configured using the software. See menu [530] in the separate Software instruction.

4.4 Connect control cables

Here you will make up the minimum wiring for starting. To comply with the EMC standard, use screened control cables with plaited flexible wire up to 1.5 mm2 (AWG15) or solid wire up to 2.5 mm2(AWG13). We recommend using twisted pair cables between Master and follower for communication signals.

- 1. Connect a level sensor between terminals 1 (+10 VDC) and 2 (AnIn 1) as in Fig. 39 The default setting for the AnIn1 is 4-20 mA. If the level sensor has a 0-10 V interface, change the position of switch (S1) on control board (Table 18).
- Connect an external Auto run switch between terminal 11 (+24 VDC) and 8 (DigIn1, Flow Auto) as in Fig. 39. Set the switch in the open position (digital input set to low state). (Do not activate the signal at this point.)
- Connect an external Full speed switch between terminal 11 (+24 VDC) and 9 (DigIn2, Flow Run) as in Fig. 39. Set the switch in the open position (digital input set to low state). (Do not activate the signal at this point.)
- Connect a communication cable between Master terminal 10 (DigIn3) and Follower terminal 21 (DigOut2) as in Fig. 39. (Only if Master/Follower).
- Connect a communication cable between Master terminal 21 (DigOut2) and Follower terminal 10 (DigIn3) as in Fig. 39. (Only if Master/Follower).
- 6. Connect an overflow level switch (optional) between terminal 11 (+24 VDC) and 18 (DigIn6, Lvl Overflow) as in Fig. 39 Connect the signal to the Follower drive instead in a Master-Follower configuration for redundancy.

Single pump or two pump configuration

Emotron FlowDrive can work in three different modes:

- Stand alone One single pump
- Master Main unit in a two pump configuration
- Follower Second pump in a two pump configuration

Fig. 38 Stand alone and Master/Follower configuration.

See next page for wiring examples of the different configurations.

4.4.1 Minimum wiring examples

Fig. 39 General control I/O, minimum wiring.

Table 19 Terminals and description of functions.

Stand alone / Master			Follower]
Terminal	Name	Description	Terminal	Name	Function	Menu
Analogue inputs						
2	AnIn 1	Level sensor				511
Outputs						
1	+10V	+10V DC supply voltage				
7	0 VDC	Common	7	0 VDC	Common	
11	+24V	+24V DC supply voltage	11	+24V	+24V DC supply voltage	
Digital inputs						
8	DigIn 1	Auto (Auto run)	8	DigIn 1	Auto (Auto run)	522
9	DigIn 2	Manual (Forced run)	9	DigIn 2	Manual (Forced run)	521
10	DigIn 3	FlowLinkIn (Follower feedback)	10	DigIn 3	FlowLinkIn (Follower control)	523
18	Digln 6	Overflow level switch (optional)	18	Digln 6	Overflow level switch (optional)	526
22	DigIn 8	Reset	22	DigIn 8	Reset	528
Digital outputs						
21	DigOut 2	FlowLinkOut (Follower control)	21	DigOut 2	FlowLinkOut (Follower feedback)	542
4.4.2 Full wiring examples

FlowDrive Stand alone

Fig. 40 FlowDrive standalone full wiring examples.

Pos. Nr	Function	Mandatory	Terminal	Description	Menu	Default setting	Customer setting
1	Level sensor	Yes	2	AnIn 1	511	Level sensor	
2	Flow sensor	No	4	AnIn 3	517	Off	Flow sensor
3	Auto/Off/Manual	No	8	DigIn 1	521	Flow ManRun	
5	switch	Yes	9	Digln 2	522	Flow AutoRun	
4	Personal protection switch	No	16	DigIn 4	524	Off	PP Timer
5	Autoreset enabling	No	22	Digln 8	528	Reset	
6	Trip relay output	No	32 - 33	Relay 1	551	Trip	
7	Operation relay output	No	42 - 43	Relay 2	552	Run	
8	Personal protection prealarm	No	51 - 52	Relay 3	553	Off	PP PreAlarm

FlowDrive Master / Follower

Fig. 41 FlowDrive Master/follower full wiring example.

Pos. Nr	Function	Man- datory	Unit	Terminal	Descrip- tion	Menu	Default setting	Customer setting
1	Level sensor	Yes	Master	2	AnIn 1	511	Level sensor	
2	Flow sensor	No	Master	4	AnIn 3	517	Off	Flow sensor
3	Auto/Off/Manual switch -	No	Master	8	DigIn 1	521	Flow ManRun	
5	Master	Yes	Master	9	DigIn 2	522	Flow AutoRun	
4	Personal protection switch	No	Master	16	DigIn 4	524	Off	PP Timer
5	Autoreset enabling	No	Master	22	DigIn 8	528	Reset	
6	Master/Follower communi-	Yes	Master	21	DigOut 2	542	FlowLinkOut	
0	cation	Yes	Follower	10	DigIn 3	523	FlowLinkIn	
7	Trip relay output	No	Master	32 - 33	Relay 1	551	Trip	
8	Operation relay output	No	Master	42 - 43	Relay 2	552	Run	
9	Personal protection pre- alarm	No	Master	51 - 52	Relay 3	553	Off	PP PreAlarm
10	Auto/Off/Manual switch -	No	Follower	8	DigIn 1	521	FlowManRun	
10	Follower	Yes	Follower	9	DigIn 2	522	FlowAutoRun	
11	Overflow level switch	No	Follower	18	DigIn 6	526	Lvl Overflow	
12	Autoreset enabling	No	Follower	22	DigIn 8	528	Reset	
10	Master/Follower communi-	Yes	Follower	21	DigOut 2	542	FlowLinkOut	
12	cation	Yes	Master	10	DigIn 3	523	FlowLinkIn	
14	Trip relay output	No	Follower	32 - 33	Relay 1	551	Trip	
15	Operation relayoutput	No	Follower	42 - 43	Relay 2	552	Run	
16	Common oldnol dround	Yes	Master	12				
то	Common, Signai ground	Yes	Follower	7				

4.4.3 Connecting the Control Signal cables

The standard control signal connections are suitable for stranded flexible wire up to 1.5 $\rm mm^2$ (AWG16) and for solid wire up to 2.5 $\rm mm^2(AWG14)$.

NOTE: The screening of control signal cables must comply with the immunity levels given in the EMC Directive (reduction of noise level).

NOTE: The control cables must be separated from motor and mains cables.

Table 20	Description of optional terminals in fig. 42 to fig.
	46.

Terminals 78, 79	For connection of Motor PTC	
Terminals A-, B+	For connection of 24V Stand-by Supply (only valid for sizes D & D2)	

Fig. 42 Connecting the control signals, FLD model 003 to 018, frame size B.

Fig. 43 Connecting the control signals, FLD model 026 to 046, frame size C.

Fig. 44 Connecting the control signals, FLD model 48-025 to 48-058 frame size C2.

Fig. 45 Connecting the control signals, FLD model 061 to 074, frame size D.

Fig. 46 Connecting the control signals, FLD model 48-072 to 48-105 frame size D2.

Fig. 47 Connecting the control signals, FLD model 48-090 to 295 and FLD model 69-90 to 200, frame size E, F and F69 (principle drawing).

Fig. 48 Connecting the control signals, FLD model 48-142 to 48-293 frame size E2 and F2 (principle drawing)

NOTE: The screening of control signal cables is necessary to comply with the immunity levels given in the EMC Directive (it reduces the noise level).

NOTE: Control cables must be separated from motor and mains cables.

4.4.4 Types of control signals

Always make a distinction between the different types of signals. Because the different types of signals can adversely affect each other, use a separate cable for each type. This is often more practical because, for example, the cable from a pressure sensor may be connected directly to the AC drive.

We can distinguish between the following types of control signals:

Analogue inputs

Voltage or current signals, (0-10 V, 0/4-20 mA) normally used as control signals for speed, torque and PID feedback signals.

Analogue outputs

Voltage or current signals, (0-10 V, 0/4-20 mA) which change slowly or only occasionally in value. In general, these are control or measurement signals.

Digital

Voltage or current signals (0-10 V, 0-24 V, 0/4-20 mA) which can have only two values (high or low) and only occasionally change in value.

Data

Usually voltage signals (0-5 V, 0-10 V) which change rapidly and at a high frequency, generally data signals such as RS232, RS485, Profibus, etc.

Relay

Relay contacts (0-250 VAC) can switch highly inductive loads (auxiliary relay, lamp, valve, brake, etc.).

Signal type	Maximum wire size	Tightening torque	Cable type
Analogue	Rigid cable: $0.14-2.5 \text{ mm}^2$ (AWG 26 - 14) Flexible cable: $0.14-1.5 \text{ mm}^2$ (AWG 26 - 16) Cable with ferrule: $0.25-1.5 \text{ mm}^2$ (AWG 24 - 16)	0.5 Nm (4.4 LB-in)	Screened
Digital			Screened
Data			Screened
Relay			Not screened

Example:

The relay output from a AC drive which controls an auxiliary relay can, at the moment of switching, form a source of interference (emission) for a measurement signal from, for example, a pressure sensor. Therefore it is advised to separate wiring and screening to reduce disturbances.

4.4.5 Screening

For all signal cables the best results are obtained if the screening is connected to both ends: the AC drive side and at the source (e.g. PLC, or computer). See Fig. 49.

It is strongly recommended that the signal cables be allowed to cross mains and motor cables at a 90° angle. Do not let the signal cable go in parallel with the mains and motor cable.

4.4.6 Single-ended or double-ended connection?

In principle, the same measures applied to motor cables must be applied to all control signal cables, in accordance with the EMC-Directives.

For all signal cables as mentioned in section 4.4.4 the best results are obtained if the screening is connected to both ends. See Fig. 49.

NOTE: Each installation must be examined carefully before applying the proper EMC measurements.

Fig. 49 Electro Magnetic (EM) screening of control signal cables.

4.4.7 Current signals ((0)4-20 mA)

A current signal like (0)4-20 mA is less sensitive to disturbances than a 0-10 V signal, because it is connected to an input which has a lower impedance (250 Ω) than a voltage signal (20 k Ω). It is therefore strongly advised to use current control signals if the cables are longer than a few metres.

4.4.8 Twisted cables

Analogue and digital signals are less sensitive to interference if the cables carrying them are "twisted". This is certainly to be recommended if screening cannot be used. By twisting the wires the exposed areas are minimised. This means that in the current circuit for any possible High Frequency (HF) interference fields, no voltage can be induced. For a PLC it is therefore important that the return wire remains in proximity to the signal wire. It is important that the pair of wires is fully twisted over 360°.

4.5 Connecting options

The option cards are connected by the optional connectors X4 or X5 on the control board see Fig. 37, page 29 and mounted above the control board. The inputs and outputs of the option cards are connected in the same way as other control signals.

5. Getting Started

This chapter is a step by step guide that will show you the quickest way to get the pumps running.

We assume that:

- the AC drive is mounted on a wall or in a cabinet as in the chapter 2. page 11.
- mains and motor cable are connected according to chapter 3.3 page 23.
- control cables are connected according to chapter 4.4 page 31.

FlowDrive can operate as a Standalone unit (1 AC drive) or in a Master-Follower configuration (2 AC drives).

Sections

Chapter 5.1 - Describes how to use the function keys on the control panel.

Chapter 5.2 - Covers basic configuration like language and motor parameters for all drives.

Chapter 5.3 - Describes configuration of Standalone/Master drive.

Chapter 5.3.3 to Chapter 5.3.6 - Describes configuration of level control parameters related to the pump sump.

Chapter 5.5 - Describes how to start up the system and make sure everything is correctly configured.

Chapter 5.6 - Run the Auto Tune program.

Chapter 5.7 - Configuration of additional features.

5.1 Function keys

The function keys operate the menus and are also used for programming and read-outs of all the menu settings.

ENTER	step to lower menu level or confirm changed setting		
ESC	step to higher menu level or ignore changed setting		
	step to next menu on the same level		
PREV	step to previous menu on the same level		
+	increase value or change selection		
-	decrease value or change selection		
LOC/ REM	 Toggle between menus in the toggle loop Switching between local and remote control Change the sign of a value 		

5.1.1 Using the function keys

Fig. 50 Example of menu navigation when entering motor voltage

Example:

Setting Motor data.

Menu [100], "Preferred View" is displayed when started.

- 1. Press 🔿 to display menu [200], "Main Setup".
- Press d and then d two times to display menu [220], "Motor Data".
- 3. Press 🖼 to display menu [221] and set motor voltage.
- Change the value using the + and − keys. Confirm with .

5.1.2 Toggle loop

Fig. 51 Default toggle loop

To ease commissioning there is a pre-programmed default toggle loop that can be used to jump between the parameters described in this guide. Often other settings adjacent to these entry points should also be configured.

- [211] Language Select language and supply voltage
- [3A11] Drive Conf .- Configuration of AC drive (Standalone/Master/Follower)
- [221] Motor Volts Motor configuration
- [341] Min speed Speed configuration
- [3C13] Sensor min Level sensor configuration
- [3A21] Overflow Configurations of levels (where to start, stop pumping)
- [3A31] Level 1 Reservoir configuration
- [3A14] RunTimeOFsw Run time after overflow switch
- [21E] CopyToFLW Copy to follower
- [7411] Sump level Inspect values and test operation

5.2 Basic configuration (all AC drives)

The FlowDrive can work in two drive modes; WasteWater and Generic drive mode.

In WasteWater mode the drive is configured for reservoir level control and in Generic drive mode it behaves like a normal Emotron FDU drive. By default the AC drive is configured in WasteWater mode and the remaining quick start guide describes how to configure this mode.

In case you are interested in running the FlowDrive as a Generic drive, change parameter "[21C] Drive appl." to "Generic" and consult the instruction manual for FDU in the download area (file archive) on www.emotron.com. Please note that there is a slight difference in the menu layout and some parameters have changed fieldbus addresses.

5.2.1 Switch on the mains

Once the mains is switched on, the internal fan in the AC drive will run for 5 seconds (In frame size A3 the fan runs continuously). The control panel is lighted up and the AC drive can be configured.

To change settings use the keys on the control panel or remote access program such as EmoSoftCom. For further information about the control panel, EmoSoftCom and menu structure, see the software instruction

5.2.2 Language and supply voltage

Menu [100], "Preferred View" is displayed when started.

- Navigate to menu [211] or press toggle button once and you will jump directly to menu [211].
 "[211] Language" – Set preferred language.
- 2. Now navigate to "Mains supply voltage [21B]" and set supply voltage according to the actual drive supply voltage used.

5.2.3 Set FlowDrive configuration

In FlowDrive WasteWater mode the AC drive can operate as a Standalone unit (using one AC drive) or in a Master-Follower configuration (using two AC drives). Select the configuration that fits your setup:

Standalone configuration

- Navigate to menu "[3A11] FLD Config" or press toggle button once more and you will jump directly to menu [3A11].
- 2. Verify that "FLD Config" is configured to "Standalone" (factory default). If not change it to "Standalone".
- 3. Continue with "5.3 Standalone / Master configuration".

Master-Follower configuration

- 1. On the follower unit navigate to menu "[3A11] FLD Config" or press toggle button once more and you will jump directly to menu [3A11].
- 2. Set "FLD Config" to "Follower". This concludes the setup for the Follower unit! Continue with configuration of Master unit below and then copy common parameters as outlined later in this guide. NOTE: Setting the parameter to "Follower" will cause a warning (blinking red triangle on PPU). Warning is "P2 Comm Err", can be seen in menu [722], and occurs because there is no configured Master unit to communicate with yet.
- 3. On the Master unit navigate to menu "[3A11] FLD Config" or press toggle button once more and you will jump directly to menu [3A11].
- 4. Set "FLD Config" to "Master".
- 5. Make sure that there are no warnings/errors (triangle on PPU should not blink nor be lit) on either Master or Follower.
- 6. Continue with "3.3 Standalone / Master configuration"

5.3 Standalone / Master configuration

NOTE: "5.2 Basic configuration (all AC drives)" should be done before entering here.

5.3.1 Set the Motor Data

Navigate to menu [221] or press toggle button once and you will jump directly to menu [221].

Enter correct motor data for the connected motor. Change settings using the keys on the control panel. For further information about the control panel and menu structure, see the software instruction.

- 1. Set motor voltage [221].
- 2. Set motor frequency [222].
- 3. Set motor power [223].
- 4. Set motor current [224].
- 5. Set motor speed [225].
- 6. Set power factor (cos ϕ) [227].

Note: User with 60Hz motors must change the values in menus: "Flush speed [3B12]" &

"Rev speed [3B34]" from 50 to 60 Hz.

5.3.2 Minimum frequency

Navigate to "[341] Min frequency" or press toggle button again to set the minimum allowed frequency.

[341] Min frequency

Minimum frequency is by default set to nominal motor frequency and must be changed by the user. Generally 70% of nominal motor frequency is a good value to start with. I.e. 35Hz in case nominal motor frequency is 50Hz. This is low enough to be able to find the best efficiency point and high enough to ensure that the pump generates a sufficient flow. Adjust upwards if the default value is considered to be too low for keeping up with normal inflow.

5.3.3 Level sensor configuration

The level sensor connected to the standalone or master unit needs to be configured based on its type and placement. Navigate to menu [3C13] or press the toggle button.

1. "[3C13] Sensor min"

This is configuration of which level, in meters, the min analogue signal from the sensor should represent. Generally this is 0 for a pressure sensor placed in the bottom of the sump. Press 🚅 to continue.

2. "[3C14] Sensor max"

This is configuration of which level, in meters, the max analogue signal from the sensor represents. This data is dependent on the sensor but often sensors with a range of 5 or 10 meters is used.

See also Fig. 52, page 42.

Regarding more advanced functions please refer to the Software instruction manual

5.3.4 Set sump levels

Set the desired levels for actions to be taken (starting and stopping of the pumps), see Fig. 52, page 42. Navigate to menu [3A21] or press the toggle button again and set following.

- 3. "[3A25] Stop level" Level where the pump is stopped Press → to continue.

Note: Overflow level has to be higher than Start level which has to be higher than Stop level. In general, the overflow level shall be set somewhat below the Overflow switch (If installed) see Fig. 52.

5.3.5 Set reservoir geometry

The reservoir geometry settings are crucial for the Auto Tune program and flow estimations. Enter values as precisely as possible, failing to do so will result in inaccurate measurements.

Navigate to menu "[3A31] Level 1" or press toggle button.

Start from the bottom level (level 1) and set a corresponding area for each change of shape in the reservoir. It is possible to use 5 levels and areas. Use as many as required, unused levels/areas should be set to 0/Off.

Last level defined is extrapolated, hence in a uniformed sump only one level/area is required.

Level 1	[3A31]	Area 1 [3A32]
Level 2	[3A33]	Area 2 [3A34]
Level 3	[3A35]	Area 3 [3A36]
Level 4	[3A37]	Area 4 [3A38]
Level 5	[3A39]	Area 5 [3A3A]

Fig. 52 Sump areas and levels, examples.

Example with round reservoir:

Level= X m,

Area = πr^2

Level 1 = 0 m Area 1 = Radius is 0.60 m, area 1 is calculated:

 $\pi 0.60^2 = 1.13 \text{m}^2$

Level 2 = 0.50 m,

Area 2 = Radius is 0.60 m, area 2 is calculated: $\pi 0.60^2 = 1.13m^2$

Level 3 = 0.60 m Area 3 = Radius 0.90 m, area 3 is calculated: $\pi 0.90^2 = 2.54 \text{ m}^2$

Example with rectangular reservoir: Level= X m,

Area = $A \times B m^2$

Level 1: 0 m Area 1 : A= 1.20 m, B= 0.50 m, area 1 is calculated: $1.20 \times 0.50 = 0.60 m^2$

Level 2 = 0.50 m,

Area 2 : A= 1.20 m, B= 0.50 m, area 2 is calculated: $1.20 \times 0.50 = 0.60 \text{ m}^2$

Level 3 = 0.60 m Area 3 : A= 1.80 m, B= 0.50m, area 3 is calculated: $1.80 \times 0.50 = 0.90 \text{ m}^2$

Examples of reservoir shapes and levels

Following are examples of different reservoir shapes and levels required.

Fig. 53 With a uniform shape, only one level /area is required as the area is the same.

Fig. 54 With this shape, 4 levels and areas are required.

5.3.6 Overflow level switch runtime

If there is an overflow level switch connected to digital in on either Master or Follower unit (not to mix up with "[3A21] Overflow" level) consider changing the minimum run time when switch is activated. Default is 0 minutes implying only run when activated.

[3A14] RunTimeOFsw

Number of minutes to run after overflow switch is activated.

5.4 Copy to follower

In case of a Master and Follower system it is now time to copy parameters to the follower. On a "Standalone" system skip this part.

Navigate to menu "[21E] CopyToFlw" or press the toggle button.

- 1. Make sure drive/drives are/is in stopped mode.
- 2. Set to "Copy" and press Enter.
- 3. Verify that "Done" emerge after a while.

5.5 Test run

Now the configuration is finished; time to test that everything works as expected.

Sump level

Sump level is shown in menu "[7411] Sump level" (and by default as first row in [100] menu).

Navigate to menu "[7411] Sump level" or press toggle button and make sure the current sump water level displayed corresponds to actual level in the sump.

Auto/Off/Manual switches

Make sure the external Auto/Off/Manual switches are configured and connected correctly as described in ::FLD Hardware.

- 1. Set both switches in "Off" position.
- 2. Go to menu "[746] Pump mode" on the Master AC drive. In this menu the mode for the pumps are shown.
- 3. Make sure "Off" is shown for both pumps in this menu. In case not "Off" is shown for both pumps, make sure the switches are in correct position and connected correctly. Also inspect the configuration in menu "[52X] DigIn X" where X is the digital input number.
- 4. Turn the Auto/Off/Manual switch to Manual for one of the pumps. The corresponding pump should start and "[746] Pump mode" should change to "Manual" for the corresponding pump (the other pump should stay in "Off" state). Test both pumps. Switch both back to "Off".
- 5. Change both switches to Auto.
- 6. "[746] Pump mode" should change to "Auto" mode.

Verify "Auto mode" operation

In "Auto" pump mode the pump should start when "[7411] Sump level" has reached "[7412] ActStartLvl" (that should be same as configured "[3A22] Start level" unless "[3B2] Start lvl Δ " is configured). Monitor how the pump decreases the level and eventually comes to a stop when "[7411] Sump level" goes below "[3A23] Stop level".

5.6 Engage "Auto Tune" program to optimize energy consumption

When concluded that the FlowDrive appears to be running correctly in Auto mode as described earlier, the "Auto Tune" program can be started. It is designed to measure reference outflows and find the best efficiency point. In addition the Auto Tune program can configure the load monitor enabling detection of obstructed pumps.

Load monitor

Decide if load monitor should be configured during the Auto Tune program. The load monitor needs to be configured to detect over/under load of the pumps during normal operation; e.g. to detect that a rug has got stuck in the pump. The "LoadMonTune [3A42]" parameter configures if the various normal loads should be measured at the beginning of the "Auto Tune" program.

"For the load monitor to be able to automatically clean an obstructed pump, pump cleaning must be allowed (see "5.7.3 Pump cleaning")."

The Load Monitor configuration is done by measuring the normal load at different frequencies. This has no real impact on the calculation of flows or energy / volume, but must be done to detect if the pump load is increased during normal operation.

• Go to menu [3A42].

"[3A42] LoadMonTune" – Set to "Yes" to configure the load monitor during Auto Tune program.

Start Auto Tune

The Auto Tune program will do a lot of measurements and will take several hours, up to days, to complete. If pump cleaning is allowed the program will start with cleaning the pumps, making sure pumps are cleaned before taking measurements. Then continue with load monitor tuning if enabled and finally run the flow and efficiency measurements. During flow and efficiency measurements the FlowDrive will use a narrow start/stop interval located slightly below the normal start level.

The AutoTune program will do "[3A43] BEP samples" of measurements at each frequency. However, if a sample measurement is considered faulty (e.g. when inflow is changed a lot or is too high) that measurement will be discharged and redone. The progress of the AutoTune program can be seen in menu "[752] BEP progress" as a percentage. When successfully finalized "[751] BEP State" will show "Finished". Under certain conditions (too many faulty measurements in a row) the AutoTune program will be aborted. In that case menu "[751] BEP State" will show "Aborted" and abort reason can then be seen in "[7531]AbortReason".

After completion, or if aborted, the AC drive will automatically jump into normal running mode.

• Navigate to menu [3A41]. "[3A41] Start AutoT" – Set to "Start" to initiate the Auto Tune program

The progress can be seen in menu "[752] BEP progress" as a percentage. When finished the result can be seen in the following parameters:

"[349] BEP Speed" – The frequency where it is most efficient to pump at.

"[94X] Flow log 1P" – Log of outflow and energy data for one pump at different frequencies.

"[95X] Flow log 2P" – Log of flows and energy data for two pumps at different frequencies.

"[41CX] Load Curve" – If load monitor was configured load data at different frequencies can be found here .

5.7 Configuration of additional features (optional)

5.7.1 Here is an overview of some of the additional features built into the FlowDrive, More detailed

information can be found in the Software

instructionFlush start

Function to always ramp up to full speed to get sludge and sediment moving. Flushing time and frequency can be configured in [3B1X] menus. By default this feature is turned on.

5.7.2 Random start level

To avoid building up residues at start level on the sump wall, it is possible to randomize where the pumps are started. By default randomized start level is turned off.

Activate this function by setting start level in "[3B2]Start lvl \triangle ", by default this is set to off.

"[3B2] Start lvl \vartriangle "– Set the desired variation in meters.

Example

Start level is set to: 1.5 meters Start lvl ∆ is set to: 0.4m Actual start level will then be randomized between 1.1m-1.5m.

5.7.3 Pump cleaning

Pump cleaning runs the pump in a specific pattern in both forward and reverse direction to clean the pump from rugs and dirt buildup. By default this feature is turned off since not all pumps can operate in reverse direction.

NOTE: Pump cleaning will reverse the pumps. Check with the pump manufacturer that the connected pump can operate in the reverse direction.

"[3B31] Act.PumpCln"

Set to 'Yes' to allow pump cleaning.

"[3B36] CleanTorque"

Set maximum allowed clean torque. Often there will be a need for some additional torque when cleaning compared to normal run conditions. If set; maximum torque, while cleaning, is maximum value of "[3B36] CleanTorque" and "[351] Max Torque".

5.7.4 Sump cleaning

This function helps getting rid of accumulated residues in the pump sump. Pump sump cleaning empties the pump sump by running the selected pump(s) below the normal stop level until slurping air. Detection of when to stop is based on the decrease in load when starting to slurping air. **NOTE 1: Running pumps below their normal stop level** might cause the pump to overheat.

NOTE 2: Problems might emerge from sucking air into the pump/pipes in some installations (generally dry setups).

NOTE 3: The load drop percentage, i.e. when to stop, must be configured and tested for optimal functionality.

5.7.5 Pipe cleaning

Pipe cleaning function produce maximum flow for as long time as possible to clean the pipes from loose residues. Pipe cleaning can be activated at any time and will be performed as soon as the start level is reached (full sump).

6. EMC and standards

6.1 EMC standards

The AC drive complies with the following standards:

EN(IEC)61800-3:2004 Adjustable speed electronic power drive systems, part 3, EMC product standards:

Standard: category C3, for systems of rated supply voltage< 1000 VAC, intended for use in the second environment.

Optional: Category C2 for systems of rated supply voltage <1.000 V, which is neither a plug in device nor a movable device and, when used in the first environment, is intended to be installed and commissioned only by experienced person with the necessary skills in installing and/or commissioning AC drives including their EMC aspects.

6.2 Stop categories and emergency stop

The following information is important if emergency stop circuits are used or needed in the installation where a AC drive is used. EN 60204-1 defines 3 stop categories:

Category 0: Uncontrolled STOP:

Stopping by switching off the supply voltage. A mechanical stop must be activated. This STOP may not be implemented with the help of a AC drive or its input/output signals.

Category 1: Controlled STOP:

Stopping until the motor has come to rest, after which the mains supply is switched off. This STOP may not be implemented with the help of a AC drive or its input/output signals.

Category 2: Controlled STOP:

Stopping while the supply voltage is still present. This STOP can be implemented with each of the AC drives STOP command.

EN 60204-1 specifies that every machine must be provided with a category 0 stop. If the application prevents this from being

implemented, this must be explicitly stated. Furthermore, every machine must be provided with an Emergency Stop function. This emergency stop must ensure that the voltage at the machine contacts, which could be dangerous, is removed as quickly as possible, without resulting in any other danger. In such an Emergency Stop situation, a category 0 or 1 stop may be used. The choice will be decided on the basis of the possible risks to the machine.

NOTE: With option Safe Stop, a "Safe Torque Off (STO)" stop according EN-IEC 62061:2005 SIL 3 & EN-ISO 13849-1:2006, can be achieved. See Chapter 12.7 page 184

7. Options

The standard options available are described here briefly. Some of the options have their own instruction or installation manual. For more information please contact your supplier. See also in "Technical catalogue AC drives" for more info.

7.1 Options for the control panel

Part number	Description
01-3957-00	Panel kit complete including panel
01-3957-01	Panel kit complete including blank panel

Mounting cassette, blank panel and straight RS232-cable are available as options for the control panel. These options may be useful, for example for mounting a control panel in a cabinet door.

Fig. 55 Control panel in mounting cassette

7.2 Handheld Control Panel 2.0

Part number	Description
01-5039-00	Handheld Control Panel 2.0 complete for FDU/VFX2.0 or CDU/CDX 2.0

The Handheld Control Panel - HCP 2.0 is a complete control panel, easy to connect to the AC drive, for temporary use when e.g. commissioning, servicing and so on.

The HCP has full functionality including memory. It is possible to set parameters, view signals, actual values, fault logger information and so on. It is also possible to use the memory to copy all data (such as parameter set data and motor data) from one AC drive to the HCP and then load this data to other AC drives

7.3 Gland kits

Gland kits are available for frame sizes B, C and D.

Metal EMC glands are used for motor and brake resistor cables.

Part Number	Current (dimension)	Frame size
01-4601-21	3 - 6 A (M16 - M20)	
01-4601-22	8 - 10 A (M16 - M25)	В
01-4601-23	13 - 18 A (M16 - M32)	
01-4399-01	26 - 31 A (M12 - M32)	C
01-4399-00	37 - 46 A (M12 - M40)	C
01-4833-00	61 - 74 A (M20 - M50)	D

7.4 EmoSoftCom

EmoSoftCom is an optional software that runs on a personal computer. It can also be used to load parameter settings from the AC drive to the PC for backup and printing. Recording can be made in oscilloscope mode. Please contact CG Drives & Automation sales for further information.

7.5 I/O Board

Part number	Description
01-3876-01	I/O option board 2.0

Each I/O option board 2.0 provides three extra relay outputs and three extra isolated digital inputs (24V). The I/O Board works in combination with the Pump/Fan Control, but can also be used as a separate option. Maximum 3 I/O boards possible. This option is described in a separate manual.

7.6 PTC/PT100

Part number	Description
01-3876-08	PTC/PT100 2.0 option board

The PTC/PT100 2.0 option board for connecting motor thermistors and max 3 PT100 elements to the AC drive is described in a separate manual.

7.7 RTC- Real time clock board

Part number	Description
01-3876-15	RTC option board

With this option board connected, it is possible to see and set actual time, date and weekday. This can be used to start or stop certain functions such as pump cleaning, pipe cleaning or sump cleaning at certain time, date or weekdays.

7.8 Serial communication and fieldbus

Part number	Description
01-3876-04	RS232/485
01-3876-05	Profibus DP
01-3876-06	DeviceNet
01-3876-09	Modbus/TCP, Industrial Ethernet
01-3876-14	Modbus/TCP, two port M12 Industrial Ethernet
01-3876-10	EtherCAT, Industrial Ethernet
01-3876-11	Profinet IO, one port Industrial Ethernet
01-3876-12	Profinet IO, two port Industrial Ethernet
01-3876-13	EtherNet/IP, two port industrial EtherNet

For communication with the AC drive there are several option boards for communication. There are different options for Fieldbus communication and one serial communication option with RS232 or RS485 interface which has galvanic isolation.

7.9 Standby supply board option

Part number	Description
01-3954-00	Standby power supply kit for after mounting. Not for frame sizes D & D2

The standby supply board option provides the possibility of keeping the communication system up and running without having the 3-phase mains connected. One advantage is that the system can be set up without mains power. The option will also give backup for communication failure if main power is lost.

The standby supply board option is supplied with external $\pm 10\%$ 24 V_{DC} protected by a 2 A slow acting fuse, from a double isolated transformer. The terminals X1:1, X1:2 (on size B, C and E to F) are voltage polarity independent. The terminals A- and B+ (on size D) are voltage polarity dependent.

Fig. 56 Connection of standby supply option n frame sizes B, C, C2, E, E2, F and F2.

X1 terminal	Name	Function	Specification
1	Ext. supply 1	External, AC drive main power	24.)(or)(
2	Ext. supply 2	independent, supply voltage for control and communication circuits	±10% Double isolated

Fig. 57 Connection of standby supply option on frame size D and D2

Terminal	Name	Function	Specification
A -	OV	External, AC drive main power	04.1/ 14.00/
В+	+24V	voltage for control and communication circuits	24 V _{DC} ±10% Double isolated

7.10 Safe Stop option

To realize a Safe Stop configuration in accordance with Safe Torque Off (STO) EN-IEC 62061:2005 SIL 3 & EN-ISO 13849-1:2006, the following three parts need to be attended to:

- 1. Inhibit trigger signals with safety relay K1 (via Safe Stop option board).
- 2. Enable input and control of AC drive (via normal I/O control signals of AC drive).
- 3. Power conductor stage (checking status and feedback of driver circuits and IGBT's).

To enable the AC drive to operate and run the motor, the following signals should be active:

- "Inhibit" input, terminals 1 (DC+) and 2 (DC-) on the Safe Stop option board should be made active by connecting 24 V_{DC} to secure the supply voltage for the driver circuits of the power conductors via safety relay K1. See also Fig. 107.
- High signal on the digital input, e.g. terminal 10 in Fig. 107, which is set to "Enable". For setting the digital input please refer to section 10.5.2, page 132.

These two signals need to be combined and used to enable the output of the AC drive and make it possible to activate a Safe Stop condition.

NOTE: The "Safe Stop" condition according to EN-IEC 62061:2005 SIL 3 & EN-ISO 13849-1:2006, can only be realized by de-activating both the "Inhibit" and "Enable" inputs.

When the "Safe Stop" condition is achieved by using these two different methods, which are independently controlled, this safety circuit ensures that the motor will not start running because:

• The 24VDC signal is disconnected from the "Inhibit" input, terminals 1 and 2, the safety relay K1 is switched off.

The supply voltage to the driver circuits of the power conductors is switched off. This will inhibit the trigger pulses to the power conductors.

• The trigger pulses from the control board are shut down.

The Enable signal is monitored by the controller circuit which will forward the information to the PWM part on the Control board.

To make sure that the safety relay K1 has been switched off, this should be guarded externally to ensure that this relay did not refuse to act. The Safe Stop option board offers a feedback signal for this via a second forced switched safety relay K2 which is switched on when a detection circuit has confirmed that the supply voltage to the driver circuits is shut down. See Table 34 for the contacts connections.

To monitor the "Enable" function, the selection "RUN" on a digital output can be used. For setting a digital output, e.g. terminal 20 in the example Fig. 107, please refer to section 10.5.4, page 138 [540].

When the "Inhibit" input is de-activated, the AC drive display will show a flashing "SST" indication in section D (bottom left corner) and the red Trip LED on the Control panel will be flashing.

To resume normal operation, the following steps have to be taken:

- Release "Inhibit" input; $24V_{DC}$ (High) to terminal 1 and 2.
- Give a STOP signal to the AC drive, according to the set Run/Stop Control in menu [215].
- Give a new Run command, according to the set Run/ Stop Control in menu [215].

NOTE: The method of generating a STOP command is dependent on the selections made in Start Signal Level/ Edge [21A] and the use of a separate Stop input via digital input.

WARNING!

The safe stop function can never be used for electrical maintenance. For electrical maintenance the AC drive should always be disconnected from the supply voltage.

Fig. 58 Connection of safe stop option in size B.

Fig. 59 Connection of safe stop option in size E and up.

Table 21	Specification	of Safe Stop	option board
----------	---------------	--------------	--------------

X1 pin	Name	Function	Specification	
1	Inhibit +	Inhibit driver circuits of	DC 24 V	
2	Inhibit -	power conductors	(20-30 V)	
3	NO contact relay K2	Feedback; confirmation	48 V _{DC} /	
4	P contact relay K2	of activated inhibit	30 V _{AC} /2 A	
5	GND	Supply ground		
6	+24 VDC	Supply Voltage for operating Inhibit input only.	+24 V _{DC} , 50 mA	

Fig. 60 Safe Stop connection

7.11 EMC filter class C1/C2

EMC filter according to EN61800-3:2004 class C1 (for frame size C types) and C2 - 1st environment restricted distribution.

For sizes BC, C2, D and D2, the filter is mounted inside the drive module.

For sizes E , external EMC filters are available.

For more information refer to "Technical catalogue for AC drives".

Note: EMC filter according to class C3 - 2nd environment included as standard in all drive units.

7.12 Output chokes

Output chokes, which are supplied separately, are recommended for lengths of screened motor cable longer than 100 m. Because of the fast switching of the motor voltage and the capacitance of the motor cable (both line to line and line to earth screen), large switching currents can be generated with long lengths of motor cable. Output chokes prevent the AC drive from tripping and should be installed as closely as possible to the AC drive.

See also in "Technical catalogue AC drives" for filter selection guide.

7.13 Liquid cooling

AC drive modules in frame sizes E - O and F69 - T69 are available in a liquid cooled version. These units are designed for connection to a liquid cooling system, normally a heat exchanger of liquid-liquid or liquid-air type. Heat exchanger is not part of the liquid cooling option.

Drive units with parallel power modules (frame size G - T69) are delivered with a dividing unit for connection of the cooling liquid. The drive units are equipped with rubber hoses with leak-proof quick couplings.

The Liquid cooling option is described in a separate manual.

7.14 Top cover for IP20/21 version

Part number	Description
01-5356-00	Top cover for frame size C2
01-5355-00	Top cover for frame sizes D2, E2 and F2 $$

This Top cover can be mounted on IP20 versions of frame sizes C2, D2, E2 and F2.

By mounting the top cover, the protection class will change to IP21 in accordance with EN 60529 standard.

Fig. 61 Optional top cover mounted on frame size D2

7.15 Other options

Following options are also available, for more information regarding these options, see in "Technical catalogue AC drives".

Overshoot clamp

Sine wave filter

Common mode filter

Brake resistors

8. Technical Data

8.1 Electrical specifications related to model

Emotron FLD - IP20/21 version

Table 22 Typical motor power at mains voltage 230, 400 and 460V. AC drive main voltage range 230 - 480 V.

	Max.	Normal duty (120%, 1 min every 10 min)					
Model	current [A]*	Rated current [A]	Power @230V [kW]	Power @230V [HP]	Power @400V [kW]	Power @460V [HP]	Frame size
FLD48-025-20	30	25	5.5	7.5	11	15	
FLD48-030-20	36	30	7.5	10	15	20	
FLD48-036-20	43	36	7.5	10	18.5	25	C2
FLD48-045-20	54	45	11	15	22	30	
FLD48-058-20	68	58	15	20	30	40	
FLD48-072-20	86	72	18.5	25	37	50	
FLD48-088-20	106	88	22	30	45	60	D2
FLD48-105-20	126	105	30	40	55	75	
FLD48-142-20	170	142	37	50	75	100	E2
FLD48-171-20	205	171	45	60	90	125	
FLD48-205-20	246	205	55	75	110	150	
FLD48-244-20	293	244	75	100	132	200	F2
FLD48-293-20	352	293	90	125	160	250	

* Available during limited time and as long as allowed by drive temperature.

Emotron FLD - IP54 version

	Max.		(120%	Normal duty 5, 1 min every :	10 min)		Frama	ID
Model	current [A]*	Rated current [A]	Power @230V [kW]	Power @230V [HP]	Power @400V [kW]	Power @460V [HP]	size	klass
FLD48-003-54	3.0	2.5	0.37	0.5	0.75	1		
FLD48-004-54	4.8	4.0	0.75	1	1.5	2		
FLD48-006-54	7.2	6.0	1.1	1.5	2.2	3		
FLD48-008-54	9.0	7.5	1.5	2	3	3	В	
FLD48-010-54	11.4	9.5	2.2	3	4	5		
FLD48-013-54	15.6	13.0	2.2	3	5.5	7.5		
FLD48-018-54	21.6	18.0	4	5	7.5	10		
FLD48-026-54	31	26	5.5	7.5	11	15		
FLD48-031-54	37	31	7.5	10	15	20		
FLD48-037-54	44	37	7.5	10	18.5	25		IP 54
FLD48-046-54	55	46	11	15	22	30		wall
FLD48-061-54	73	61	15	20	30	40	D	mounted
FLD48-074-54	89	74	18.5	25	37	50		
FLD48-090-54	108	90	22	30	45	60		
FLD48-109-54	131	109	30	40	55	75		
FLD48-146-54	175	146	37	50	75	100		
FLD48-175-54	210	175	45	60	90	125		
FLD48-210-54	252	210	55	75	110	150		
FLD48-228-54	300	228	55	75	110	200	_Е	
FLD48-250-54	300	250	75	100	132	200] '	
FLD48-295-54	354	295	90	125	160	250		

Table 23Typical motor power at mains voltage 230, 400 and 460 V. AC drive main voltage range 230 - 480 V.

* Available during limited time and as long as allowed by drive temperature.

Emotron FLD 2.0 - IP54 version (Model 69-250 and up also available as IP20)

Max.			Norma (120%, 1 min		ID		
Model	output current [A]*	Rated current [A]	Power @525V [kW]	Power @575V [HP]	Power @690V [kW]	Frame size	class
FLD52-003-54	3.0	2.5	1.1	-	-		
FLD52-004-54	4.8	4.0	2.2	-	-		
FLD52-006-54	7.2	6.0	3	-	-		
FLD52-008-54	9.0	7.5	4	-	-	В	
FLD52-010-54	11.4	9.5	5.5	-	-		
FLD52-013-54	15.6	13.0	7.5	-	-		
FLD52-018-54	21.6	18.0	11	-	-		
FLD52-026-54	31	26	15	-	-		
FLD52-031-54	37	31	18.5	-	-	C C	IP 54
FLD52-037-54	44	37	22	-	-	Ŭ	mounted
FLD52-046-54	55	46	30	-	-		mounted
FLD52-061-54	73	61	37	-	-	D	
FLD52-074-54	89	74	45	-	-		
FLD69-090-54	108	90	55	75	90		
FLD69-109-54	131	109	75	100	110		
FLD69-146-54	175	146	90	125	132	F69	
FLD69-175-54	210	175	110	150	160	1	
FLD69-200-54	240	200	132	200	200	1	

Table 24Typical motor power at mains voltage 525, 575 and 690 V.AC drive main voltage range, for 52: 440 - 525 V and for 69: 500 - 690 V.

* Available during limited time and as long as allowed by drive temperature.

8.2 General electrical specifications

Table 25General electrical specifications

General

Mains voltage: 48	230-480V +10%/-15% (-10% at 230 V)
52	440-525 V +10 %/-15 %
69	500-690V +10%/-15%
Mains frequency:	45 to 65 Hz
Mains voltage imbalance:	$\pm 3.0\%$ of nominal phase to phase input voltage
Input nowor factor:	
Output voltage:	0-Mains supply voltage:
Output frequency:	0-400 Hz
Output switching frequency:	3 kHz (adjustable 1,5-6 kHz)
Efficiency at nominal load:	97% for models 003 to 018
	98% for models 025 to 3K0
Control signal inputs:	
Analogue (differential)	
Analogue Voltage/current:	0-±10 V/0-20 mA via switch
Max. input voltage:	+30 V/30 mA
Input impedance:	20 kohm (voltage)
h h	250 kohm (current)
Resolution:	11 hits $+$ sign
Hardware accuracy:	1% type ± 1.16 LSB fed
Non linearity	
Non-inteality	172 L3B
Digital:	
Input voltage:	High: >9 VDC, Low: <4 VDC
Max. input voltage:	+30 VDC
Input impedance:	<3.3 VDC: 4.7 kohm
	≥3.3 VDC: 3.6 kohm
Signal delay:	≤8 ms
Control signal outputs	
Analogue	
Output voltage/current:	0-10 V/0-20 mA via software setting
Max. output voltage:	+15 V @5 mA cont.
Short-circuit current (∞):	+15 mA (voltage), +140 mA (current)
Output impedance:	10 ohm (voltage)
Resolution:	10 hit
Maximum load impedance for current	500 ohm
Hardware accuracy:	1.9% type fed (voltage) $2.4%$ type fed (current)
Offect:	
Vinsel.	
Non-linearity:	2 LSB
Digital	
Output voltage:	High: >20 VDC @50 mA, >23 VDC open
	Low: <1 VDC @50 mA
Shortcircuit current(∞):	100 mA max (together with +24 VDC)
Relays	
Contacts	0.1 - 2 A/Umax 250 VAC or 42 VDC (30 VDC acc. to UL requirement) for
	general Purpose or Resistive use only .
References	
+10VDC	+10 V _{DC} @10 mA Short-circuit current +30 mA max
-10VDC	- 10 V _{DC} @10 mA
+24VDC	+24 V _{DC} Short-circuit current +100 mA max (together with Digital Outputs)

8.3 Operation at higher temperatures

Most Emotron AC drives are made for operation at maximum of 40°C (104 °F) ambient temperature. However, it is possible to use the AC drive at higher temperatures with reduced output rating.

Possible derating

Derating of output current is possible with -1% / degree Celsius to max +15 °C (= max temp 55 °C) or -0.55%/ degree Fahrenheit to max +27 °F (= max temp. 131 °F).

Example

In this example we have a motor with the following data that we want to run at the ambient temperature of $45 \text{ }^\circ\text{C}$ (113 $^\circ\text{F}$):

Voltage 400 V Current 72 A Power 37 kW (50 hp)

Select AC drive

The ambient temperature is 5 °C (9 °F) higher than the maximum ambient temperature. The following calculation is made to select the correct AC drive model.

Derating is possible with loss in performance of $1\%/^{\circ}C$ (0.55%/ degree F).

Derating will be: $5 \ge 1\% = 5\%$

Calculation for model 48-074 74 A - (5% x 74) = 70.3 A; this is not enough.

Calculation for model 48-090 90 A - (5% x 90) = 85.5 A

In this example we select the 48-090.

8.4 Operation at higher switching frequency

Table 26 shows the switching frequency for the different AC drive models. With the possibility of running at higher switching frequency you can reduce the noise level from the motor. The switching frequency is set in menu [22A], Motor sound, see software instruction. At switching frequencies >3 kHz derating might be needed.

Table 26 Switching frequency

Models	Standard Switching frequency	Range
FLD##-003 to FLD##-295	3 kHz	1.5-6 kHz

8.5 Dimensions and Weights

The table below gives an overview of the dimensions and weights. The models 003 to 250 are available in IP54 as wall mounted modules.

Protection class IP54 is according to the EN 60529 standard.

Models	Frame size	IP54 Dim. H x W x D mm (in)	IP54 Weight kg (lb)
003 to 018	В	350/416 x 203 x 200 (13.8/16.4 x 8 x 7.9)	12.5 (27.6)
026 to 046	С	440/512 x178x292 (17.3/20.2 x 7 x 11.5)	24 (52.9)
061 to 074	D	545/590 x 220 x 295 (21.5/23.2 x 8.7 x 11.5)	32 (70.6)
90 to 109	E	950 x 285 x 314 (37.4 x 11.2 x 12.4)	56 (123.5)
146 to 175	E	950 x 285 x 314 (37.4 x 11.2 x 12.4)	60 (132.3)
210 to 295	F	950 x 345 x 314 (37.4 x 13.6 x 12.4)	75 (165.4)

Table 27 Mechanical specifications, 48, 52

Table 28 Mechanical specifications, 69

Models	Frame size	IP54 Dim. H x W x D mm (in)	Weight IP54 kg (lb)
90 to 200	F69	1090 x 345 x 314 (42.9 x 13.6 x 12.4)	77 (169.8)

Dimensions and weights for models Emotron 48 - IP20/21 version

The table below gives an overview of the dimensions and weights of the Emotron IP20/21 version.

These AC drives are available as wall mounted modules; The IP20 version is optimised for cabinet mounting. With the optional top cover, protection class is in compliance with IP21, making it suitable for mounting directly on the electrical room wall.

The protection classes IP20 and IP21 are defined according to the EN 60529 standard.

Models	Frame size	IP20 Dim. H1/H2 x W x D mm (in)	IP21* Dim. H1/H2 x W x D mm (in)	IP20/21 Weight kg (lb)
025 to 058	C2	438 / 536 x 176 x 267 (17.2/21.1 x 6.9 x 10.5)	438 / 559 x 196 x 282 (17.2/22 x 7.7 x 11.1)	17 (37.5)
072 to 105	D2	545 / 658 x 220 x 291 (21.5/25.9 x 8.7 x 11.5)	545 / 670 x 240 x 307 (21.5/26.4 x 9.5 x 12.1)	30 (66)
142 to 171	E2	956 / 956 x 275 x 294 (37.6/37.6 x 10.8 x 11.6)	956 / 956 x 275 x 323 (37.6/37.6 x 10.8 x 12.7)	53 (117)
205 to 293	F2	956 / 956 x 335 x 294 (37.6/37.6 x 13.2 x 11.6)	956 / 956 x 335 x 323 (37.6/37.6 x 13.2 x 12.7)	68 (150)

Table 29 Mechanical specifications, 48 - IP20 and IP21 version

H1 = Enclosure height.

H2 = Total height including cable interface.

* with optional top cover

8.6 Environmental conditions

Table 30 Operation

Parameter	Normal operation
Nominal ambient temperature	0 °C–40 °C (32 °F - 104 °F) See table, see chapter 8.3 page 59 for different conditions
Atmospheric pressure	86-106 kPa (12.5 - 15.4 PSI)
Relative humidity according to IEC 60721-3-3	Class 3K4, 595% and non condensing
Contamination, according to IEC 60721-3-3	No electrically conductive dust allowed. Cooling air must be clean and free from corrosive materials. Chemical gases, class 3C2. Solid particles, class 3S2.
Vibrations	According to IEC 600068-2-6, Sinusodial vibrations: 10 <f<57 (0.00295="" 0.075="" ft)<br="" hz,="" mm="">57<f<150 (0,035="" 1g="" hz,="" oz)<="" td=""></f<150></f<57>
Altitude	$\begin{array}{l} 0-1000 \mbox{ m} (0-3280 \mbox{ ft}) \\ 480 \mbox{ VAC drives, with derating 1\%/100 \mbox{ m} (328 \mbox{ ft}) \mbox{ of rated current up to 4000 \mbox{ m} (13123 \mbox{ ft}) \\ 690 \mbox{ VAC drives, with derating 1\%/100 \mbox{ m} (328 \mbox{ ft}) \mbox{ of rated current up to 2000 \mbox{ m} (6562) \mbox{ ft} \\ \mbox{ Coated boards required for 2000 - 4000 \mbox{ m} (6562 - 13123 \mbox{ ft}) \\ \end{array}$

Table 31 Storage

Parameter	Storage condition
Temperature	-20 to +60 °C (-4 to + 140 °F)
Atmospheric pressure	86-106 kPa (12.5 - 15.4 PSI)
Relative humidity according to IEC 60721-3-1	Class 1K4, max. 95% and non condensing and no formation of ice.

8.7 Fuses and glands

8.7.1 According to IEC ratings

Use mains fuses of the type gL/gG conforming to IEC 269 or breakers with similar characteristics. Check the equipment first before installing the glands.

Max. Fuse = maximum fuse value that still protects the AC drive and upholds warranty.

NOTE: The dimensions of fuse and cable cross-section are dependent on the application and must be determined in accordance with local regulations.

NOTE: The dimensions of the power terminals used in the cabinet drive models 300 to 3K0 can differ depending on customer specification.

Table 32 Fuses, cable cross-sections and glands

	Nominal input	Maximum value	e Cable glands (clamping range) *		
Model	current [A]	fuse [A]	mains / motor	Brake	
##-003	2.2	4	M32 opening	M25 opening	
##-004	3.5	4	M20 + reducer	M20 + reducer	
##-006	5.2	6	(6-12 mm(0.24 - 0.47 in))	(6-12 mm(0.24 - 0.47 in))	
##-008	6.9	10	M32 (12–20)/M32 opening		
##-010	8.7	10	M25+reducer (10-14 mm(0.39 - 0.55 in))	M25	
##-013	11.3	16	M32 (16-25)/M32 (13-18)	(10-14 mm(0.39 - 0.33 m))	
##-018	15.6	20	10132 (10-23)/10132 (13-18)		
##-025	22	25	- (12 - 16 mm(0	0.55 - 0.63 in))	
##-026	22	25	M32 (15-21 mm(0.59 - 0.83 in))	M25	
##-030	26	35	- (16 - 20 mm (0.63 - 0.79 in))	
##-031	26	35	M32 (15-21 mm(0.59 - 0.83 in))	M25	
##-036	31	35	- (20 - 24 mm	(0.79 - 0.94))	
##-037	31	35	M40 (19–28 mm (0.75 - 1.1 in))	M32	
##-045	38	50	- (24 - 28 mm(0.94 - 1.1 in))		
##-046	38	50	M40 (19-28 mm (0.75 - 1.1 in))	M32	
##-058	50	63	- (24 - 28 mm(0.94 - 1.1 in))	
##-061	52	63	M50 (27 - 35 mm(1.06 - 1.38 in))	M40 (19-28 mm (0.75 - 1.1 in))	
##-072	64	80	- (28 - 32 mm(1.1 - 1.26 in))	
##-074	65	80	M50 (27 - 35 mm(1.06 - 1.38 in))	M40 (19-28 mm(0.75 - 1.1 in))	
##-088	78	100	- (32 - 36 mm(2	1.26 - 1.42 in))	
##-090	78	100	48: (Ø17-42 mm (0.67 - 1.65 in)) cable flexible leadthrough or M50 opening. 69: (Ø23-55 mm (0.9 - 2.16 in)) Cable flexible leadthrough or M63	48: (Ø11-32 mm(0.43 - 1.26 in)) Cable flexible leadthrough or M40 opening. 69: (Ø17-42 mm (0.67 - 1.65 in)) Cable flexible leadthrough or M50	
			opening.	opening.	
##-105	91	100	- (32 - 36 mm(2	1.26 - 1.42 in))	
##-109	94	100	48: (Ø17-42 mm (0.67 - 1.65 in)) cable flexible leadthrough or M50 opening. 69: (Ø23-55 mm (0.9 - 2.16 in)) Cable flexible leadthrough or M63 opening.	 48: (Ø11-32 mm(0.43 - 1.26 in)) Cable flexible leadthrough or M40 opening. 69: (Ø17-42 mm (0.67 - 1.65 in)) Cable flexible leadthrough or M50 opening. 	
##-142	126	160	- (40 - 44 mm (1.57 - 1.73 in))	- (36 - 40 mm(1.42 - 1.57 in))	

Table 32	Fuses,	cable	cross-sections	and	glands
----------	--------	-------	----------------	-----	--------

	Nominal input	Maximum value	Cable glands (clamping range) *		
Model	current [A]	fuse [A]	mains / motor	Brake	
##-146	126	160	48: (Ø17-42 mm (0.67 - 1.65 in)) cable flexible leadthrough or M50 opening. 69: (Ø23-55 mm (0.9 - 2.16 in)) Cable flexible leadthrough or M63 opening.	48: (Ø11-32 mm(0.43 - 1.26 in)) Cable flexible leadthrough or M40 opening. 69: (Ø17-42 mm (0.67 - 1.65 in)) Cable flexible leadthrough or M50 opening.	
##-171	152	160	- (40 - 44 mm (1.57 - 1.73 in))	- (36 - 40 mm(1.42 - 1.57 in))	
##-175	152	160	48: (Ø17-42 mm (0.67 - 1.65 in)) cable flexible leadthrough or M50 opening. 69: (Ø23-55 mm (0.9 - 2.16 in)) Cable flexible leadthrough or M63 opening.	48: (Ø11-32 mm(0.43 - 1.26 in)) Cable flexible leadthrough or M40 opening. 69: (Ø17-42 mm (0.67 - 1.65 in)) Cable flexible leadthrough or M50 opening.	
##-205	178	200	- (48 - 52 mm(1.89 - 2.05 in)/ 52 - 56 mm (2.05 - 2.2 in))	- (44 - 48 mm (1.73 - 1.89 in))	
##-210	182	200	(Ø23 - 55 mm (0.9 - 2.16 in))	(Ø17- 42 mm (0.67 - 1.65 in))	
##-228	197	250	cable flexible leadthrough or M63 opening.	cable flexible leadthrough or M50 opening.	
##-244	211	250	- (48 - 52 mm(1.89 - 2.05 in)/ 52 - 56 mm (2.05 - 2.2 in))	- (44 - 48 mm (1.73 - 1.89 in))	
##-250	216	250	Ø(23 - 55 mm (0.9 - 2.16 in))	Ø(23 - 55 mm (0.9 - 2.16 in))	
##-295	256	300	cable flexible leadthrough or M63 opening.	cable flexible leadthrough or M63 opening.	
##-293	254	300	- (48 - 52 mm(1.89 - 2.05 in)/ 52 - 56 mm (2.05 - 2.2 in))	- (44 - 48 mm (1.73 - 1.89 in))	

Note: For IP54 models 003 to 074 cable glands are optional.

* IP20/21 models are equipped with cable clamps instead of glands.

For data on cable connection ranges, see section 3.4.3, page 25

8.7.2 Fuses according to NEMA ratings

	Input	Mains input fuses		
Model	current [Arms]	UL Class J TD (A)	Ferraz- Shawmut type	
48-003	2.2	6	AJT6	
48-004	3.5	6	AJT6	
48-006	5.2	6	AJT6	
48-008	6.9	10	AJT10	
48-010	8.7	10	AJT10	
48-013	11.3	15	AJT15	
48-018	15.6	20	AJT20	
48-025	21.7	25	AJT25	
48-026	22	25	AJT25	
48-030	26	30	AJT30	
48-031	26	30	AJT30	
48-036	31	35	AJT35	
48-037	31	35	AJT35	
48-045	39	45	AJT45	
48-046	40	45	AJT45	
48-058	50	60	AJT60	
48-061	52	60	AJT60	
48-072	64	80	AJT80	
48-074	65	80	AJT80	
48-088	78	100	AJT100	
48-090	78	100	AJT100	
48-105	91	110	AJT110	
48-109	94	110	AJT110	
48-142	126	125	AJT150	
48-146	126	150	AJT150	
48-171	152	175	AJT175	
48-175	152	175	AJT175	
48-205	178	200	AJT200	
48-210	182	200	AJT200	
48-228	197	250	AJT250	
48-244	211	250	AJT250	
48-250	216	250	AJT250	
48-293	254	300	ATJ300	
48-295	256	300	AJT300	

8.8 Control signals

Table 34

Terminal X1	Name:	Function (Default):	Signal:	Туре:
1	+10 V	+10 VDC Supply voltage	+10 VDC, max 10 mA	output
2	AnIn1	Level sensor	0 -10 VDC or 0/4-20 mA bipolar: -10 - +10 VDC or -20 - +20 mA	analogue input
3	AnIn2	Off	0 -10 VDC or 0/4-20 mA bipolar: -10 - +10 VDC or -20 - +20 mA	analogue input
4	AnIn3	Off	0 -10 VDC or 0/4-20 mA bipolar: -10 - +10 VDC or -20 - +20 mA	analogue input
5	AnIn4	Off	0 -10 VDC or 0/4-20 mA bipolar: -10 - +10 VDC or -20 - +20 mA	analogue input
6	-10 V	-10VDC Supply voltage	-10 VDC, max 10 mA	output
7	Common	Signal ground	OV	output
8	DigIn 1	Auto run	0-8/24 VDC	digital input
9	DigIn 2	Forced run	0-8/24 VDC	digital input
10	DigIn 3	FlowLinkIn	0-8/24 VDC	digital input
11	+24 V	+24VDC Supply voltage	+24 VDC, 100 mA	output
12	Common	Signal ground	0 V	output
13	AnOut 1	Min speed to max speed	0 ±10 VDC or 0/4- +20 mA	analogue output
14	AnOut 2	0 to max torque	0 ±10 VDC or 0/4- +20 mA	analogue output
15	Common	Signal ground	0 V	output
16	DigIn 4	Off	0-8/24 VDC	digital input
17	DigIn 5	Off	0-8/24 VDC	digital input
18	DigIn 6	Overflow level switch (optional)	0-8/24 VDC	digital input
19	DigIn 7	Off	0-8/24 VDC	digital input
20	DigOut 1	Ready	24 VDC, 100 mA	digital output
21	DigOut 2	FlowLinkOut	24 VDC, 100 mA	digital output
22	DigIn 8	Reset	0-8/24 VDC	digital input
Terminal X2				
31	N/C 1	Relay 1 output		
32	COM 1	Trip, active when the		
33	N/0 1	N/C is opened when the relay is active (valid for all relays) N/O is closed when the relay is active (valid for all relays)	potential free change over 0.1 – 2 A U _{max} = 250 VAC or 42 VDC	relay output
41	N/C 2	Relay 2 Output	notential free change over	
42	COM 2	Run, active when the AC drive is	0.1 - 2 A	relay output
43	N/0 2	mode.	U _{max} = 250 VAC or 42 VDC	
Terminal X3				
51	COM 3	Relay 3 Output	potential free change over	
52	N/0 3	Off	0.1 – 2 A U _{max} = 250 VAC or 42 VDC	relay output

NOTE: Possible potentiometer value in range of 1 k Ω to 10 k Ω (¼ Watt) linear, where we advice to use a linear 1 k Ω / ¼ W type potentiometer for best control linearity.

9. Menu List

On our home page in the download area, you could find a "Communication information" list and a list to note Parameter set information.

Some menus are marked with grey, see below, these menus are so called "Advanced menus":

	3A24	BEP start	No		
--	------	-----------	----	--	--

To access the advanced menus, press \mathcal{J}_{m} and \mathbb{H} buttons simultaneously for 3 seconds. It is also possible to go to menu "[21D] MenuMode" and select FLD Advanced.

				Factory setting	Customer
100	Prefe	erred Vi	ew		
	110	1st Li	ne	Sump level	
	120	2nd L	ine	Frequency	
200	Main	Setup			
	210	Opera	tion		
		211	Language	English	
		212	Select Motor	M1	
		213	Drive Mode	V/Hz	
		214	Ref Control	Flow ctrl	
		215	Run/Stp Ctrl	Flow ctrl	
		216	Reset Ctrl	Rem+Keyb+Com	
		218	Lock Code?	0	
		219	Rotation	R+L	
		21A	Level/Edge	Level	
		21B	Supply Volts	Not Defined	
		21C	Drive Appl.	Waste water	
		21D	MenuMode	Basic	
		21E	CopyToFlw	Off	
		21F	Autotoggle		
			21F1 Start delay	0s	
			21F2 Toggle Time	5s	
	220	Motor	Data		
		221	Motor Volts	U _{NOM} V	
		222	Motor Freq	50Hz	
		223	Motor Power	(P _{NOM}) kW	
		224	Motor Curr	(I _{MOT}) A	
		225	Motor Speed	(n _{MOT}) rpm	
		226	Motor Poles	4	
		227	Motor Cosφ	$\text{Cos}\phi_{\text{NOM}}$	
		228	Motor Vent	Self	
		229	Motor ID-Run	Off	
	22A Motor Sound 22E Motor PWM		F		
			Motor PWM		
			22E1 PWM Fswitch	3.00 kHz	
			22E2 PWM Mode	Standard	
			22E3 PWM Random	Off	
		22H	Phase order	Normal	
	230	Mot P	rotect		
		231	Mot I ² t Type	Irip	
		232	Mot I ² t Curr	100%	
		233	NOT I't lime	6US	
		234	Matar Olar		
		235	DT100 Inpute	F 140°C	
		236	Motor PTC	PT100 1+2+3	
		231	WIDTOT PTC	UIT	

				Factory setting	Customer
240	Set Ha	andling			
	241	Select	t Set	Α	
	242	Copy	Set	A>B	
	243	Defau	lt>Set	A	
	244	Copy	to CP	No Copy	
	245	Load	from CP	No Copy	
250	Autore	eset		L	
	251	No of	Trips	10	
	252	Overte	emp	Off	
	253	Overv	olt D	Off	
	254	Overv	olt G	Off	
	255	Overv	olt	6s	
	256	Motor	Lost	Off	
	257	Locke	d Rotor	Off	
	258	Power	r Fault	Off	
	259	Under	voltage	6s	
	25A	Motor	l ² t	60s	
	25B	Motor	¹² t TT	Trip	
	25C	PT100)	Off	
	25D	PT100) TT	Trip	
	25E	PTC		Off	
	25F	PTC T	T	Trip	
	25G	Ext Tri	p	Off	
	25H	Ext Tri	p TT -	Trip	
	251	Com E	rror	Off	
	25J	Com L	rror II	Irip	
	25K	Min A		Off	
	25L	May A		irip Off	
		Max A		UII	
	250			nip Off	
	250	Over		Off	
	25Q	Evt M	ot Temp	Off	
	255	Ext M	ot TT	Trin	
	25T	LCLe	vel	Off	
	250	LCLe	vel TT	Trip	
260	Serial	Com		p	
	261	Com 1	Type	RS232/485	
	262	RS23	2/485	,	
	2621 Baudrate		38400		
		2622 Address 263 Fieldbus		1	
	263				
		2631	Address	62	
		2632	PrData Mode	Basic	
		2633	Read/Write	RW	
		2634	AddPrValues	0	
	264 Comm Fault 2641 ComFlt Mode				
			Off		
		2642 ComFlt Time		0.5 s	
	265	Etheri	net		
		2651	IP Address	0.0.0.0	
		2652	MAC Address	000000000000000000000000000000000000000	
		2653	Subnet Mask	0.0.0.0	
		2654	Gateway	0.0.0.0	
		2655	DHCP	Off	

				-		
					Factory setting	Customer
		266	FB Sig	gnal		
			2661	FB Signal 1	0	
			2662	FB Signal 2	0	
			2663	FB Signal 3	0	
			2664	FB Signal 4	0	
			2665	FB Signal 5	0	
			2666	FB Signal 6	0	
			2667	FB Signal 7	0	
			2668	FB Signal 8	0	
			2669	FB Signal 9	0	
			266A	FB Signal 10	0	
			266B	FB Signal 11	0	
			2660	FB Signal 12	0	
			266D	FB Signal 13	0	
			266E	FB Signal 14	0	
			200L	FB Signal 15	0	
			200	EP Signal 16	0	
		000	2000	FD Signal 10	0	
200	Dura	269	FB Sta	atus		
300	Proc	ess	0.1			
	3A0	Level	Ctrl			
		3A1	Mode	config		
			3A11	Drive conf.	Stand alone	
			3A12	Start Sel.	Run time	
			3A13	Empty time	240min	
			3A14	RnTimeOFsw	Omin	
		3A2	Level	config		
			3A21	Overflow	0	
			3A22	Start Level	0	
			3A23	Stop Level	0	
			3A24	BEP start	0	
			3A25	BEP stop	0	
			3A26	PreOverFlow	0	
		3A3	Sump	Geometry		
			3A31	Level 1	0	
			3A32	Area 1	Off	
			3A33	Level 2	0	
			3A34	Area 2	Off	
			3A35	Level 3	0	
			3A36	Area 3	Off	
			3A37	Level 4	0	
			3A38	Area 4	Off	
			3A39	Level 5	0	<u> </u>
			3A3A	Area 5	Off	
		3A4	Autoti	ine		
			3A41	Start AutoT	Off	
			3A42	LoadMonTune	Yes	
			3A43	BEP samples	5	
			3A44	BEP step	2Hz	
			3A45	MeasType	Off	
	3B0	Funct	ions			
	220	3B1	Flush	start		
		201	3R11	Flush time	10s	
			3810	Flush encod	50Hz	
		360	Start	vi A	Off	
		383	Pump			
		303	2004		No	
			3831	ForceDuran	NU Off	
			3832	ForcePumpCl		
			3R33	PumpCperiod	UTT	

					Factory setting	Customer
			3B34	Rev. speed	50Hz	
			3B35	ReverseTime	10s	
			3B36	CleanTorque	Off	
			3B3A	PC interval	Off	
			3B3B	PCstartDate	2015-01-01	
			3B3C	PCstartTime	Off	
		3B4	Sump	Cleaning		
			3B41	Act.SumpCln	Off	
			3B42	ForceSumpCl	No	
			3B43	Off Torque Δ	50%	
			3B44	Timeout	10min	
			3B45	SumpCPeriod	Off	
			3B4A	RecurInterv	Odays	
			3B4B	SCstartDate	2015-01-01	
			3B4C	SCstartTime	00:00:00	
		3B5	PipeC	leaning		
			3B51	ForcePipeC	No	
			3B52	PipeCperiod	Off	
		3B6	Load	Ionitor		
			3B61	LoadMonTune	Not Done	
	3C0	Senso	ors			
	_	3C1	Level	sensor		
			3C11	Level Unit	m	
			3C12	User unit	0	
			3C13	Sensor min	0	
			3C14	Sensor max	10	
			3C15	Ratio	Linear	
		3C2	Flow s	ensor		
			3C21	Flow Unit	Off	
			3C23	Flow Min	0	
			3C24	Flow Max	1000	
			3C25	Ratio	Linear	
	330	Start/	Stop			
		331	Acc Ti	me	4s	
		332	Dec T	ime	4s	
		335	Acc>N	/lin Spd	4s	
		336	Dec <i< td=""><td>Vin Spd</td><td>4s</td><td></td></i<>	Vin Spd	4s	
		337	Acc R	mp	Linear	
		338	Dec R	mp	Linear	
		339	Start	Mode	Fast	
	340	Speed	ł			
		341	Min s	beed	50Hz	
		343	Max s	peed	Sync speed	
		349	BEP S	peed	OHz	
	350	Torque	Torques			
		351	Max T	orque	120%	
		352	IxR Co	omp	Off	
		353	IxR Co	ompUsr	0%	
		354	Flux o	ptim		
	075	355	Max F	ower	UTT	
	3/0	Spd C	tri Pl	1.4	0.44	
		3/1	Spd P	I AUTO		
		3/2	Spd P	Gain	5	
100	M	3/3	Spd I	ıme	0.14S	
400	MONI	lor/Pro	Manit			
	410	Load	vionito	Coloot	04	
		411	Alarm	Select		
		412	Alarm	uip	UTT	
			Factory setting	Customer		
-----	--------	-------------------	-----------------	----------	--------	
	413	Ramp Alarm	Off			
	414	Start Delay	5s			
	415	Load Type	Load Curve			
	416	Max Alarm				
1		4161 MaxAlarmMar	30%			
		4162 MaxAlarmDel	10s			
	417	Max Pre alarm				
		4171 MaxPreAlMar	20%			
		4172 MaxPreAlDel	5s		500 l/	
	418	Min Pre Alarm			5	
		4181 MinPreAlMar	20%			
		4182 MinPreAlDel	5s			
1	419	Min Alarm				
		4191 MinAlarmMar	30%			
		4192 MinAlarmDel	10s			
	41A	Autoset Alrm	No			
	41B	Normal Load	100%			
	410	Load Curve				
	.10	41C1 Load Curve 1	0 rpm 100%			
		41C2 Load Curve 2	0 rpm 100%			
		41C3 Load Curve 2	0 rpm 100%			
		41C4 Lood Curve 3	0 rpm 100%			
		41C4 Load Curve 4	0 rpm 100%			
		41C5 Load Curve 5	0 rpm 100%			
		41C6 Load Curve 6	0 rpm 100%			
		41C7 Load Curve 7	0 rpm 100%			
		41C8 Load Curve 8	0 rpm 100%			
		41C9 Load Curve 9	0 rpm 100%			
420	Proce	ss Prot				
	421	Low Volt OR	On			
	422	Rotor Locked	Off			
	423	Motor Lost	Off			
	424	OverVolt Ctl	On			
	425	OverflowPol	High			
	426	Sensor lost	Off			
430	Perso	n Prot	•			
	431	PreAlarm	30min			
	432	Alarm	5min			
440	User t	rips	·			
L	441	User trip 1				
	1	4411 Action 1	No action			
		4412 Delay 1	Os			
		4413 Active pol 1	High			
		4414 Autoreset 1	Off			
		4415 Trip name 1	User defined			
		4416 Trip text 1	User trip 1			
[442	User trin 2	sip ±	1		
		4421 Action 2	No action			
		4422 Delay 2	0s			
		4423 Active pol 2	High			
		1121 Autoroat 2	Off			
		4425 Trip parts 2				
		4425 Inp name 2				
I		4426 Irip text 2	User trip 2	<u> </u>		
	443	User trip 3	1	1		
		4431 Action 3	No action			
		4432 Delay 3	0s			
		4433 Active pol 3	High			
		4434 Autoreset 3	Off			
		4435 Trip name 3	User defined			

				Factory setting	Customer
		4436	Trip text 3	User trip 3	
	444	User t	rip 4		
		4441	Action 4	No action	
		4442	Delay 4	0s	
		4443	Active pol 4	High	
		4444	Autoreset 4	Off	
		4445	Trip name 4	User defined	
		4446	Trip text 4	User trip 4	
)s					
0	An Inp	outs			
	511	AnIn1	. Fc	Level sensor	
	512	AnIn1	Setup	4-20mA	
	513	AnIn1	. Advn	•	
		5131	AnIn1 Min	4mA	
		5132	AnIn1 Max	20.00mA	
		5133	AnIn1 Bipol	20.00mA	
		5134	AnIn1 FcMin	Min	
		5135	AnIn1 VaMin	0	
		5136	AnIn1 FcMax	Max	
		5137	AnIn1 VaMax	0	
		5138	AnIn1 Oper	Add+	
		5139	AnIn1 Filt	0.1s	<u> </u>
		513A	AnIn1 Enabl	On	<u> </u>
	514	AnIn2	Fc	Off	
	515	AnIn2	Setup	4-20mA	
	516	AnIn2	Advan		
		5161	AnIn2 Min	4mA	
		5162	AnIn2 Max	20.00mA	
		5163	AnIn2 Bipol	20.00mA	
		5164	AnIn2 FcMin	Min	
		5165	AnIn2 VaMin	0	
		5166	AnIn2 FcMax	Max	
		5167	AnIn2 VaMax	0	
		5168	AnIn2 Oper	Add+	
		5169	AnIn2 Filt	0.1s	
		516A	AnIn2 Enabl	On	
ĺ	517	AnIn3	Fc	Off	
	518	AnIn3	Setup	4-20mA	
	519	AnIn3	Advan	1	I
		5191	AnIn3 Min	4mA	
		5192	AnIn3 Max	20.00mA	
		5193	AnIn3 Bipol	20.00mA	
		5194	AnIn3 FcMin	Min	
		5195	AnIn3 VaMin	0	
		5196	AnIn3 FcMax	Max	
		5197	AnIn3 VaMax	0	
		5198	AnIn3 Oper	Add+	
		5199	AnIn3 Filt	0.1s	
		519A	AnIn3 Enabl	On	
	51A	AnIn4	Fc	Off	
	51B	AnIn4	Setup	4-20mA	
	510	AnIn4	Advan		
		51C1	AnIn4 Min	4mA	
		5102	AnIn4 Max	20.00mA	
		5102	AnIn4 Ripol	20.00mA	
		5104	AnIn/4 FeMin	Min	
		5105		0	
		5100		Max	
		STCP	AIIII14 FCIVIAX	IVIDX	

				Factory setting	Customer
		51C7	AnIn4 VaMax	0	
		51C8	AnIn4 Oper	Add+	
		51C9	AnIn4 Filt	0.1s	
		51CA	AnIn4 Enabl	On	
520	Dig In	puts			
	521	DigIn	1	Flow ManRun	
	522	DigIn	2	Flow AutoRun	
	523	DigIn	3	FlowLink In	
	524	DigIn	4	Off	
	525	DigIn	5	Off	
	526	DigIn	6	Lvl overflow	
	527	DigIn	7	Off	
	528	DigIn	8	Reset	
	529	B(oar	d)1 DigIn 1	Off	
	52A	B(oar	d)1 DigIn 2	Off	
	52B	B(oar	d)1 DigIn 3	Off	
	52C	B(oar	d)2 DigIn 1	Off	
	52D	B(oar	d)2 DigIn 2	Off	
	52E	B(oar	d)2 DigIn 3	Off	
	52F	B(oar	d)3 DigIn 1	Off	
	52G	B(oar	d)3 DigIn 2	Off	
	52H	Bloan	d)3 DigIn 3	Off	
530	An Ou	tputs	, 8 9		
L	531	AnOut	1 Fc	Frequency	
	532	AnOut	1 Setun	4-20mA	
	533	AnOut	1 Advan	,	
		5331	AnOut 1 Min	4mA	
		5332	AnOut 1 Max	20.0mA	
		5333	AnOut1Binol	20.0mA	
		5334	AnOut1 EcMin	Min	
		5335	AnOut1 VaMin	0	
		5335		∽ Max	
		5330	AnOut1 VaMay	0	
	534	AnOut	2 FC	~ Current	
	534	AnOut	2 Setun	4-20mA	
	536	AnOut	2 Advan		
	550	5261		4m∆	
		5360	AnOut 2 May	-+111/4 20.0m4	
		5362		20.0mA	
		5303		∠0.0IIIA Min	
		5265		0	
		5365		Max	
		5305			
E40		036/	Anoulz vaiviax	U	
540		Liputs	+ 1	Poody	
	541 542	DigOu	IL L	Reauy	
550	542 Del-1	טטפות	IL ∠	FIOWLINKOUT	
550	Relays	Dele	1	Trip	
	201	Relay	T _	irip Dupping	
	552	Relay	2	Running	
	553	Relay	3	Utt	
	554	B(oar	d)1 Relay 1	Off	
	555	B1 Re	elay 2	Off	
	556	B1 Re	elay 3	Off	
	557	B2 Re	elay 1	Off	
	558	B2 Re	elay 2	Off	
	559	B2 Re	elay 3	Off	
	55A	B3 Re	elay 1	Off	
	55B	B3 Re	elay 2	Off	

			Factory setting	Customer
	55C	B3 Relay 3	Off	
	55D	Relay Advan		
		55D1 Relay 1 Mode	N.0	
		55D2 Relay 2 Mode	N.0	
		55D3 Relay 3 Mode	N.0	
		55D4 B1R1 Mode	N.0	
		55D5 B1R2 Mode	N.0	
		55D6 B1R3 Mode	N.0	
		55D7 B2R1 Mode	N.0	
		55D8 B2R2 Mode	N.0	
		55D9 B2R3 Mode	N.0	
		55DA B3R1 Mode	N.0	
		55DB B3R2 Mode	N.0	
	-	55DC B3R3 Mode	N.0	
5	60 Virtua	al I/Os		
	561	VIO 1 Dest	Off	
	562	VIO 1 Source	Off	
	563	VIO 2 Dest	Off	
	564	VIO 2 Source	Off	
	565	VIO 3 Dest		
	566	VIO 3 Source	Off	
	567	VIO 4 Dest	Off	
	568	VIO 4 Source	011	
	569	VIO 5 Dest	Off	
	56A	VIO 5 Source	Off	
	56B	VID 6 Source	Off	
	560		Off	
	565	VIO 7 Source	Off	
	56E	VIO 8 Dest	Off	
	56G	VIO 8 Source	Off	
600 Lo	ogical&Tin	ners		
6:	10 Comp	arators		
	611	CA1 Setup		
		6111 CA1 Value	Speed	
		6112 CA1 Level HI	300	
		6113 CA1 Level LO	200	
		6114 CA1 Type	Hysteresis	
		6115 CA1 Polar	Unipolar	
	612	CA2 Setup		
		6121 CA2 Value	Torque	
		6122 CA2 LevelHI	20	
		6123 CA2 LevelLO	10	
		6124 CA2 Type	Hysteresis	
		6125 CA2 Polar	Unipolar	
	613	CA3 Setup		
		6131 CA3 Value	Process Val	
		6132 CA3 LevelHI	30	
		6133 CA3 LevelLO	20	
		6134 CA3 Type	Hysteresis	
		6135 CA3 Polar	Unipolar	
	614	CA4 Setup	Dreeses Fill	
		6141 CA4 Value	Process Err	
		6142 CA4 LevelHI	10	
		6144 CA4 Ture	- 10 Window	
		6145 CA4 Delar	Ripolor	
		0145 CA4 Polar	ыроіаг	

				Factory setting	Customer						Factory setting	Customer
	615	CD Se	etup			1			6725	Clk 2 Weekday	MTWTFSS	
		6151	CD1	Run		700	Oper,	/Status	S			
		6152	CD2	DigIn 1			710	Opera	tion			
		6153	CD3	Trip				711	Proce	ss Val		
		6154	CD4	Ready				712	Speed	ł		
620	Logic	Y						713	Torqu	е		
	621	Y Con	1p 1	CA1				714	Shaft	Power		
	622	Y Ope	rator 1	&				715	El Pov	ver		
	623	Y Con	1p 2	!A2				716	Curre	nt		
	624	Y Ope	rator 2	&				717	Outpu	it volt		
	625	Y Con	1p 3	CD1				718	Frequ	ency		
630	Logic	Z						719	DC Vo	Itage		
	631	Z Con	1p 1	CA1				71A	Heats	ink Tmp		
	632	Z Ope	rator 1	&				71B	PT100			
	633	Z Con	1p2	!A2			720	Statu	5			
	634	Z Ope	rator 2	&				721	VSD S	itatus		
	635	Z Con	1p 3	CD1				722	Warni	ng		
640	Timer	1		-				724	DigIn	Status		
	641	_ Timer	1 Trig	Off				725	DigOu	tStatus		
	642	Timer	1 Mode	Off				726	AnIn 1	L 2		
	643	Timer	1 Delay	00.00.00				727	AnIn 3	3 4		
	644	Timer	1 T1	00.00.00				728	AnOut	12		
	645	Timer	1 T2	00:00:00				729	I0 Sta	tus B1		
	649	Timer	1 Value	00:00:00				72A	IO Sta	tus B2		
650	Timer	2						72B	IO Sta	tus B3		
	651	Timer	2 Trig	Off				72D	VIO St	atus		
	652	Timer	2 Mode	Off			730	Store	d Val			
	653	Timer	2 Delay	00:00:00				731	Run T	ime		
	654	Timer	2 T1	00:00:00					7311	RunTime Tot		
	655	Timer	2 T2	00:00:00					7312	P1 Run Time	00:00:00	
	659	Tmer2	2 Value	00:00:00					7313	P2 Run Time	00:00:00	
660	Count	ers							7314	RunTime Day		
	661	Count	ter 1						7315	P1 RunT Day	00:00:00	
		6611	C1 Trig	Off					7316	P2 RunT Day	00:00:00	
		6612	C1 Reset	Off				732	Mains	Time	00:00:00	
		6613	C1 High Val	0				733	Energ	у		
		6614	C1 Low Val	0					7331	Energy tot	kWh	
		6615	C1 DecTimer	Off					7332	Energy P1	kWh	
		6619	C1 Value	0					7333	Energy P2	kWh	
	662	Count	ter 2						7334	Energy Day		
		6621	C2 Trig	Off					7335	P1EnergyDay		
		6622	C2 Reset	Off					7336	P2EnergyDay		
		6623	C2 High Val	0				734	Pump	starts		
		6624	C2 Low Val	0					7341	Pstarts tot		
		6625	C2 DecTimer	Off					7342	P1 starts		
		6629	C2 Value	0					7044	P2 starts		
670	Clock	logic							7344	StartsToday		
	671	Clock	1						7345	P1StartsDay P2StartsDay		
		6711	Clk 1 TimeOn	00:00:00				736	Energ	ySaving		
		6712	Clk 1 TimeOff	00:00:00				737	Overfl	ow		
		6713	Clk 1 DateOn	2013-01-01					7371	LastDurTime	00:00:00	
		6714	Clk 1 DateOff	2013-01-01					7373	TotDurTime	00:00:00	
		6715	Clk 1 Weekday	MTWTFSS			740	Flow S	Status			
	672	Clock	2					741	Sump	level		
		6721	Clk 2 TimeOn	00:00:00				742	Inflow			
		6722	Clk 2 TimeOff	00:00:00				743	Outflo	W		
		6723	Clk 2 DateOn	2013-01-01					7431	Outflow Tot		
		6724	Clk 2 DateOff	2013-01-01					7432	Outflow P1		

				Factory setting	Customer	
		7422	Outflow D2	,		
		7433	NotElow			
	744	7434	INELFIOW			
	744	Pump			ſ	
		7441	P1 Volume			
		7442				
		7443	P2 VolumeDeily			
		7444				
		7445				
	745	Frequ	ency			
	745	Dump	mode	Off		
	740	Curre	nt	Off		
	744	FlowS	tate			
750	REPS	tatus	luic			
100	751	BFPs	tate			900
	752	BEPn	ngress			000
	753	BEP A	borts			
		7531	AbortReason			
		7532	UnevenFlow			
		7533	PrePostFlow			
		7534	CalcSave			
		7535	NoRefFlow			
		7536	RuntimeLow			
		7537	NoPostFlow			
		7538	NoPreFlow			
800 View	Trinlog	1000	NOTICITOW			
810	Trin M	5 lessage	(log list 1)			
010	811	Onera				
	011	8111	Process Val			
		8112	Sneed			
		8113	Torque			
		8114	Shaft Power			
		8115	El Power			
		8116	Current			
		8117	Output volt			
		8118	Frequency			
		8119	DC Voltage			
		811A	HeatsinkTmn			
		811B	PT100 1.2.3			
	812	Speed	1			
		8121	VSD Status			
		8123	Warning P2			
		8124	DigInStatus			
		8125	DigOutStat			
		8126	Anin 1 2			
		8127	AnIn 3 4			
		8128	AnOut1 2			
		8129	IO StatusB1			
		812A	IO StatusB2			
		812B	IO StatusB3			
	813	Stored	d Val			
		8131	P1 Run Time			
		8132	Mains Time			
		8133	Energy P1		<u> </u>	
		8134	Pstarts tot			
		8135	Pump starts			
		8136	Time			
		8137	Date			
					1	

				Factory setting	Customer			
		814	Flow Status					
			8141 Sump level					
			8142 Pump mode					
			8143 Flow state					
			8144 BEP state					
ĺ	820	Trip M	lessage 821- 8244(log	g list 2)				
	830	Trip M	lessage 831 - 8344 (lo	og list 3)				
	840	Trip M	lessage 841 - 8444 (lo	og list 4)				
	850	Trip M	lessage 851 - 8544 (lo	og list 5)				
	860	Trip M	lessage 861 - 8644 (le	og list 6)				
	870	Trip M	lessage 871 - 8744 (lo	g list 7)				
	880	Trip M	lessage 881 - 8844 (le	og list 8)				
	890	Trip M	lessage 891 - 8944 (lo	og list 9)				
	8A0	Reset	Trip L	No				
)	Syste	m Data	a					
	920	VSD D	Data					
		921	VSD Type					
		922	Software					
			9221 Build Info					
			9222 Build ID					
	1	923	Unit name	0				
ĺ	930	Clock						
ļ		931	Time	00:00:00				
		932	Date	13-01-01				
		933	Weekday	Monday				
1	940	Flow I	og 1P					
		941	Valid points	0				
		942	Freq: XX.x Hz					
9421 Outflow			9421 Outflow	Olit/s				
			9422 Flow energy	OWh				
			9423 Measured	0				
		943	Freq: XX.x Hz + subm	enus 9431 - 9433				
		944	Freq: XX.x Hz + subm	enus 9441 - 9443				
		945	Freq: XX.x Hz + subm	enus 9451 - 9453				
		946	Freq: XX.x Hz + subm	enus 9461 - 9463				
		947	Freq: XX.x Hz + subm	enus 9471 - 9473				
		948	Freq: XX.x Hz + subm	enus 9481 - 9483				
		949	Freq: XX.x Hz + subm	enus 9491 - 9493				
		94A	Freq: XX.x Hz + subm	enus 94A1 - 94A3				
		94B	Freq: XX.x Hz + subm	enus 94B1 - 94B3				
		94C	Freq: XX.x Hz + subm	enus 94C1 - 94C3				
		94D	Freq: XX.x Hz + subm	enus 94D1 - 94D3				
		94E	Freq: XX.x Hz + subm	enus 94E1 - 94E3				
		94F	Freq: XX.x Hz + subm	enus 94F1 - 94F3				
		94G	Freq: XX.X Hz + subm	enus 94G1 - 94G3				
		94H	Freq: XX x Hz + subm	enus 94H1 - 94H3				
		941	Freq: XX x Hz + subm	enus 9411 - 9413				
		94K	Freq: XX x Hz + subm	enus 94K1 - 94K3				
ĺ	950	Flow	og 2P	0.110 0 1112 0 4110				
		951	Valid points	0				
		952 -	95K same menus as	943 - 94K for Pum	0 2			

			Factory setting	Customer
990	Reset			
	991 Reset Energy		No	
	992 Savings 993 Reset Volume 994 Reset starts 995 Daily Reset 996 Overflow 997 Reset runtime		No	
			No	

CG Drives & Automation Sweden AB Mörsaregatan 12 Box 222 25 SE-250 24 Helsingborg Sweden T +46 42 16 99 00 F +46 42 16 99 49 www.emotron.com/www.cgglobal.com