cometere cetelog ue

Contents

Temperature-Relays and MINIKA ${ }^{\circledR}$ 5-62
Mains Monitoring 63-122
Digital Measuring Instruments MINIPAN ${ }^{\circledR}$ 123-134
Switching-Relays and Controls 135-164
Measuring Transducers, 165-182 Measuring-Point Change-over-Switches
Dimension Illustrations 183-191
Anhang 192-195
Terms of Payment and Delivery 196-197
Representatives 198-199

Your customer number
\square

Temperature-Relays

PTC Resistor-Relays Type MS 6Temperature-Range $60 \ldots 180^{\circ} \mathrm{C}$Fixed switching pointParticularly suitable for monitoring ofElectromotors, Transformers and Bearings
PTC-Resistor Temperature Sensors (Thermistors) MINIKA ${ }^{\circledR}$ 25
Temperature-Relays for Pt 100-Sensors (RTD) Type TR 31
Temperature-Range -200... $850^{\circ} \mathrm{C}$
Adjustable switching point
For use in the manufacture of chemical apparatus
plastic machinery, for motor protection in
high-power generators and high-voltage motors
Safety Temperature Limiter 53
Pt 100-Sensors (RTD) 55
Temperature-Relays for Thermocouples Type TR 59
Temperature-Range $-170 \ldots+1820^{\circ} \mathrm{C}$
Adjustable switching point
for high-temperature monitoring functions
Measuring-Transducers and Measuring-Point change-over
see products groups 4 and 5

PTC-Resistor-Relays

General

ZIEHL PTC resistor relays and ZIEHL PTC resistors according to DIN 44081 and DIN 44082 are a reliable protection from thermal overloading. Together they result in a fast and effective protective system for i.e. engines and transformers.
ZIEHL PTC relays offer the following advantages:

- Sensors and relays can be used in many combination
- fixed response temperatures of the sensors of 60 ... $180^{\circ} \mathrm{C}$
- reliable monitoring of sensor line sensors
- 1-6 PTC resistor connectable
- monitoring of normally closed contacts possible housings for the fast assembly standard rail or with screws M4
- protection against accidental contact according to VBG 4, VDE 106 part of 100

ZIEHL PTC resistor relays are routine tested and meet the following standards for PTC resistor relays: VDE 0660, VDE 0160, IEC 337-1, CENELEC hp 420 i

Type	housing	connectable PTC-resistors	potential-free relay contacts	reclosinglock	approvals/remarks
MS220K	K	1... 6	$1 \mathrm{CO}, 2 \mathrm{CO}$	-	Low-Cost-Version
MSR220K	K	1... 6	$1 \mathrm{CO}, 2 \mathrm{CO}$	x	Low-Cost-Version
MS220KA	K	1... 6	$1 \mathrm{CO}, 2 \mathrm{CO}$	-	Short-circuit monitoring, ATEX-Approval
MSR220KA	K	1... 6	$1 \mathrm{CO}, 2 \mathrm{CO}$	x	Short-circuit monitoring, ATEX-Approval
MS220VA	V2	1... 6	1 CO	-	Short-circuit monitoring, ATEX-Approval
MSR220VA	V2	1... 6	1 CO	x	Short-circuit monitoring, ATEX-Approval
MS220Vi	V4	1... 6	2 CO	-	intrinsic safe sensor-circuit, Ex II (1) GD (Ex ia) II C (Ex ia D)
MSR220Vi	V4	1... 6	2 CO	x	intrinsic safe sensor-circuit, Ex II (1) GD (Ex ia) II C (Ex ia D)
MS220C	C	1... 6	1 CO	-	compact device, GL-Zulassung
MS220K2	K	$2 \times 1 \ldots 6$	2×1 CO	-	2 seperate channels
MSR220K2	K	$2 \times 1 \ldots 6$	$2 \times 1 \mathrm{CO}$	x	2 seperate channels, reclosing-lock
MSR220K6	K	$6 \times 1 \ldots 6$	1 CO	x	6 channels, common output
MSR820V	V4	$8 \times 1 \ldots 6$	2 CO	x	8 channels, common output, LED-display for responsing sensor-circuit
MSM220K	K	1... 6	1 CO	x	reclosing lock power fail proof, test button
MS40ZT	S12	1... 6	1 CO	-	pulse input for monitoring movement of elevators
MSF220K	K	$2 \times 1 \ldots 6$	$1 \mathrm{CO}, 1 \mathrm{NO}$	-	2 seperate channels, test-button, monitoring of dry transformers
MSF220SE	S12	$2 \times 1 \ldots 6$	2x1 CO	-	2 seperate channels, timing-relay, monitoring of dry transformers
MSF220V	V4	$3 \times 1 \ldots 6$	2×1 CO, 1 NO	-	3 seperate channels, fan-control, monitoring of dry transformers
MSF220VL	V4	$4 \times 1 \ldots 6$	$4 \times 1 \mathrm{CO}$	-	4 seperate channels, fan-control, core monitoring of dry transformers
TS1000	V8	$3 \times 1 \ldots 6$	$3 \times 1 \mathrm{CO}, 6 \times 1$ NO	-	protection of dry transformers with integrated monitoring of fan-motors
MS-Tester	K	-	-	-	device for testing PTC-relays

Function

The electronics monitors the sensor-circuit with a continous current. In the cold state the resistance is <250 Ω per sensor and the relay signals o.k. The resistance of the sensors rise rapidly when reaching nominal response temperature (NRT). The relay switches at values
between 1650Ω... 4000Ω. The relay switches backat values $\leq 1650 \Omega$.

PTC-relays type MS switch back automatically. PTC-relays type MSR store the switching until a RESET (integrated reset-button, external reset with contact at terminal or switch-off of power-supply). PTC-relays type MSM have a power-fail proof reclosing lock.

Application

PTC-relays in combination with PTC-resistors also effectively monitor the temperatures of

- bearings in equipment and machinery
- coolants, i.e. in transformers
- airflows and gases
- oil and other liquid media

PTC-resistor sensors are suitable for the installation into windings of electrical machines. They protect against to high temperatures in case of: blocking rotors, hard start, countercurrent operation, undervoltage and phase failure, with increased ambient temperature and hindered cooling.

PTC-Resistor-Relay Type MS(R)220K

Single PTC-Circuit

MS220K

Art.-no.: 1 CO 2 CO
AC 220-240V T221745 T221765
AC/DC 24V T221741 T221761
$1 \mathrm{CO} / 1 \mathrm{NO}$
AC/DC 24-240V T221749

MSR220K

cilus

The MS220K is a particularly economical standard design in a $22,5 \mathrm{~mm}$ wide housing with vertically arranged terminals. Each terminal remains accessible even if all others are already occupied.

Same execution as MS220K, additionally with electronic reclosing lock. A switching is stored until a RESET.

- electronic reclosing lock (disconnectable)
- integrated RESET-button
- link for external RESET
- automatic RESET at voltage recovery
- LEDs for power ON (green) and alarm (red) in resetbutton
- UL Recognized Component
- Option:
othersupply-voltages

Rated supply voltage Us
connectable PTC resistors switching point
output relay
type of contact
test conditions
rated ambient temperature range
dimensions ($\mathrm{h} \times \mathrm{w} \times \mathrm{d}$) attachment
protection housing / terminals weight

- 1 PTC resistor set 1 ... 6 PTC resistors
- output relay with 1 or 2 change-over (co) contacts
- 2 LEDs for ON and ALARM
- K-type housing, vertically arranged terminals, 22,5 mm wide
- assembly on 35 mm DIN rail or with 2 screws M4 (option)
- UL Recognized Component
- Option:
- other suppy-voltages

AC 220-240 V, $\pm 10 \%, 50 / 60 \mathrm{~Hz}, \leq 2 \mathrm{VA}$ AC/DC $24 \mathrm{~V}, \mathrm{AC} \pm 10 \% \mathrm{DC} 21-30 \mathrm{~V}<2 \mathrm{VA}$, without potential separation
AC/DC 24-240 V, AC 14-264 V, DC 20-297 V < 2 VA 1... 6 PTC according to DIN 44081 or 44082 $<4000 \Omega$
1 or 2 change-over contacts (co) type 2 see "general technical information" see "general technical information" $-20 \ldots+55^{\circ} \mathrm{C}$
design K: $75 \times 22.5 \times 110$ [mm]
on 35 mm DIN rail according to DIN EN 50022
or with screws M4 (option)
IP 30 / IP 20
approx. 150 g

PTC-Resistor-Relay Type MS(R)220KA
 Single PTC-Circuit, ATEX-Approval according to Directive 2014/34/EU

PTC-relay for the application as a protection device against inadmissible heating up at electrical equipment in areas with explosive gases (zones 1 and 2) and areas with combustible dust (21 and 22), e.g. for direct temperature-monitoring of explosion-proof motors EEx e and EEx d.
Vertically arranged terminals. Each terminal remains accessible even if all others are already occupied.

- ATEX-approval according to directive 2014/34/EU
- SIL 1 according to IEC 61508
- PL c according to ISO 13849
- 1 PTC-resistor (thermistor) set, each 1... 6 PTCsensors
- short-circuit monitoring of sensor-circuit
- output-relay with 1 or 2 change-over contacts (co)
- 2 LEDs for ON and ALARM
- K-housing,vertically arranged terminals housing 22.5 mm wide
- assembly on DIN-rail or with 2 screws M4 (option)
- UL Recognized Component
- Option:
- other suppy-voltages

Order-numbers:	1 change-over	2 change-over
AC 220-240 V	T222445	T222455
AC/DC 24 V		$\mathbf{T 2 2 2 4 5 1}$

 SIL

Same execution as MS220KA, additionally with electronic reclosing lock. An alarm is stored until a reset is made.

- ATEX-approval according to directive 2014/34/EU
- SIL 1 according to IEC 61508
- PL c according to ISO 13849
- electronic reclosing lock (disconnectable)
- integrated RESET-button
- link for external reset
- automatic reset at voltage recovery
- LEDs for power-on (green) and alarm (red) in resetbutton
- UL Recognized Component
- Option:
- other suppy-voltages

Technical Data

Rated supply-voltageUs
connectable PTC-resistors switching point output relay type of contaxt test conditions rated ambient temperature dimensions ($\mathrm{h} \times \mathrm{w} \times \mathrm{d}$) attachment protection housing/terminals weight

2 change-over

Order-numbers:	2 change-over
AC 220-240 V	T222475
AC/DC 24 V	T222471
AC 110-120 V	T222473
AC 380-415 V (without cURus)	T222476
CX II (2) G [Ex e] [Ex d] [Ex px]	
II (2) D [Ex t] [Ex p]	C

AC $220-240 \mathrm{~V} \pm 10 \% 50 / 60 \mathrm{~Hz} \leq 2 \mathrm{VA}$
AC/DC $24 \mathrm{~V}, \mathrm{AC} \pm 10 \% \mathrm{DC} 21-30 \mathrm{~V}<2 \mathrm{VA}$, without potential separation
$1 \ldots 6$ in series according toDIN 44081 or 44082
< 4000Ω
1 or 2 change-over contacts (co)
type 2 see "general technical information"
see "general technical information"
$-20 \ldots+55^{\circ} \mathrm{C}$
design K: $75 \times 22,5 \times 110[\mathrm{~mm}]$
on 35 mm DIN-rail or with 2 screws M4 (option)
IP 30 / IP 20
app. 150 g

PTC-Resistor-Relay Type MS(R)220VA

Single PTC-Circuit, Atex-Approval according to Directive 2014/34/EU

MSR220VA

PTC-relay for the application as a protection device against inadmissible heating up at electrical equipment in areas with explosive gases (zones 1 and 2) and areas with combustible dust (21 an 22), e.g. for direct temperatu-re-monitoring of explosion-proof motors EEx e and EEx d.
This compact version is especially suitable for mounting in fuse-boxes or power-distribution panels.

- ATEX-approval according to directice 2014/34/EU
- SIL 1 nach IEC 61508
- PL c nach ISO 13849

Same execution as MS220VA, additionally with electronic reclosing lock. An alarm is stored until a reset is made.

- ATEX-approval according to directive 2014/34/EU
- SIL 1 nach IEC 61508
- PL c nach ISO 13849
- electronic reclosing lock (disconnectable)
- integrated RESET-button
- link for external reset
- automatic reset at voltage recovery
- UL Recognized Component
- Option:
- other supply-voltages
- 1 PTC-resistor (thermistor) set, each 1... 6 PTCsensors
- short-circuit monitoring of sensor-circuit
- output-relay with 1 change-over contact (co)
- 2 LEDs for ON and ALARM
- housing for mounting in fuse-boxes
- mounting height $55 \mathrm{~mm}, 35 \mathrm{~mm}$ wide
- assembly on DIN-rail or with 2 screws M4
- UL Recognized Component Option:
- - other suppy-voltages

SIL

II (2) G [Ex e] [Ex d] [Expx] II (2) $D[E x t][E x p]$
 c-

II (2) $G[E x$ e] [Ex d] [Ex px] II (2) $D[E x t][E x p]$

c -1 us

Rated supply-voltageUs
connectable PTC-resistors switching point output relay type of contaxt test conditions rated ambient temperature dimensions ($\mathrm{h} \times \mathrm{w} \times \mathrm{d}$) attachment protection housing/terminals weight

AC $220-240 \mathrm{~V} \pm 10 \% 50 / 60 \mathrm{~Hz} \leq 2 \mathrm{VA}$
AC/DC $24 \mathrm{~V}, \mathrm{AC} \pm 10 \% \mathrm{DC} 21-30 \mathrm{~V}<2 \mathrm{VA}$, without potential separation
1... 6 in series according toDIN 44081 or 44082
$<4000 \Omega$
1 change-over contact (co)
type 2 see "general technical information" see "general technical information"
$-20 . . .+55^{\circ} \mathrm{C}$
design V2: $90 \times 35 \times 58$ [mm]
on 35 mm DIN-rail or with 2 screws M4
IP 30 / IP 20
app. 120 g

PTC-Resistor-Relay Type MS(R)220Vi
Atex-Approval according to Directive 2014/34/EU, intrinsic safe input

PTC-relay for the application as a protection device against inadmissible heating up at electrical equipment in areas with explosive gases (zones 0,1 and 2) and in areas with combustible dust (zones 20, 21 and 22), e.g. for direct monitoring in explosionprotected areas where intrinsic safety class "i" is afforded.
PTC-Sensors (Thermistors) of intrinsic safety class "i" can be connected directly. The sensors may be placed in the potentially explosive athmosphere, e.g. for mechanical explosion-protection at bearings. The relay itself may not be installed in the potentially explosive atmospheres.

Same execution as MS220Vi, additionally with electronic reclosing lock. An alarm is stored until a reset is made.

- ATEX-approval according to directive 2014/34/EU
- Electronic reclosing lock (disconnectable)
- Integrated RESET-button
- Link for external reset
- Automatic reset at voltage recovery
- Option: other supply-voltages
- Connection for temperature sensor with intrinsic safety ignition protection type Ex ia IIC and Ex iaD
- ATEX-approval according to directive 2014/34/EU
- Safety Integrity Level SIL 1
- 1 PTC-resistor set (thermistors), each 1... 6 PTC
- Short-circuit monitoring of sensor-circuit
- Output-relay with 2 change-over contacts
- LEDs for ON and ALARM
- Housing for mounting in switchgear-cabinet, 70 mm wide, mounting height 55 mm
- Assembly on DIN-rail 35 mm or screws M4
- Option:
other supply-voltages
Order-number:
AC 220-240 V T222185

Ex II (1) GD [Ex ia] IIC [Ex iaD]

Order-numbers:

AC 220-240 V	T222195
AC/DC 24 V	T222191

区x

II (1) GD [Ex ia] IIC [Ex iaD]

Technical Data Rated supply-voltage Us

Connectable PTC-resistors Switching point

Output relay
Type of contact
Test conditions
Rated ambient temp. range
Dimensions (H x W x D)
Attachment
Protection housing/terminals Weight

AC $220-240 \mathrm{~V} \pm 10 \% 50 / 60 \mathrm{~Hz} \leq 2 \mathrm{VA}$
AC/DC $24 \mathrm{~V}, \mathrm{AC} \pm 10 \%$ DC $21-30 \mathrm{~V}<2 \mathrm{VA}$, without potential separation
1... 6 in series according to DIN 44081 or 44082 < 4000Ω

2 change-over contacts (co)
type 2, see "general technical information"
see "general technical information"
$-20 \ldots+60^{\circ} \mathrm{C}$
Design V4: $90 \times 70 \times 58 \mathrm{~mm}$, mounting height 55 mm on 35 mm rail according to EN 60715 or screws M4 IP 30 / IP 20
app. 180 g

PTC-Resistor-Relay Type MS220C
 Single PTC-Circuit

Art.-number:
AC/DC24 V T221830
AC 220-240V T221804

Technical Data

This compact device is the smallest version of all our PTCresistor relays:

- terminals outside
- protection terminals IP 20
- Relays 1 change-over contact (co)
- GL-approval for version AC 220-240 V

(GL) cH°

Rated supply voltage Us
connectable PTC resistors switching point
output relay
type of contact
test conditions
rated ambient temperature range
dimensions ($\mathrm{h} \times \mathrm{wx}$ d) attachment
protection housing / terminals weight

AC $220-240 \mathrm{~V} \pm 10 \%, 50 / 60 \mathrm{~Hz}, 2 \mathrm{VA}$ AC/DC $24 \mathrm{~V}, \mathrm{AC}+10 /-15 \%$, DC +25/-20 \%, $<1 \mathrm{~W}$, < 2 VA , without potential separation
1... 6 PTC according to DIN 44081 or 44082 <4000 Ω

1 change-over contact (co)
type 2 see "general technical information"
see "general technical information"
$-20 \ldots+55^{\circ} \mathrm{C}$
design C: $72 \times 33 \times 60[\mathrm{~mm}$]
on 35 mm of DIN rail according to EN 60715 or with screws M4
IP 30 / IP 20
approx. 120 g

PTC-Resistor-Relay Type MS220C
 Single PTC-Circuit, Supply Voltage AC/DC 24-240 V

Art.-number:
AC/DC24-240V T221821

This compact device is the smallest version of all our PTCresistor relays:

- terminals outside
- protection terminals IP 20
- Relays 1 change-over contact (co)

Rated supply voltage Us
connectable PTC resistors switching point
output relay type of contact
test conditions rated ambient temperature range
dimensions ($\mathrm{h} \times \mathrm{w} \times \mathrm{d}$) attachment
protection housing / terminals weight

Us = Anschlussspannung
S1 = Aus-Taster
S2 $=$ Ein-Taster
H1 $=$ Meldelampe Störung
F1-F4
F1-F4 = Sicherungen
K1 = Motorschütz
Us = supply voltage
S1 = pushbutton OFF S2 = pushbutton ON H1 = trip alarm F1-F4 = fuse $\mathrm{K} 1=$ contactor

AC/DC 24-240 V, AC 20-264 V, DC 20-297 V, $<1 \mathrm{~W}$, < 4 VA
1... 6 PTC according to DIN 44081 or 44082 $<4000 \Omega$

1 change-over contact (co)
type 2 see "general technical information"
see "general technical information"
$-20 \ldots+70^{\circ} \mathrm{C}$
design C: $72 \times 33 \times 60[\mathrm{~mm}$]
on 35 mm of DIN rail according to EN 60715
or with screws M4
IP 30 / IP 20
approx. 120 g

PTC-Resistor-Relay Type MS(R)220K2
 2 PTC-Circuits

MS220K2

MSR220K2

The MS220K2 monitors 2 PTCresistor sets at the same time. If a temperature rise occurs in one set, the appropriate output relay releases.
With this relay, 2 PTC-sets can be independently monitored on only 22.5 mm space

- 2 PTC-resistor sets, each 1 ... 6 PTC resistors
- output relays 2×1 changeover contact (co)
- LEDs for operation and alarm

Same execution as MS220K 2, additionally with electronic reclosing lock:

- electronoic reclosing lock (disconnectible)
- integrated RESET-button
- link for external RESET
- automatic RESET at voltage recovery

Order numbers:
AC/DC 24 V T221943 AC 230 V T221945 c ${ }^{-1}$ us

Rated supply voltage Us
connectable PTC resistors switching point
output relays
type of contact
test conditions
rated ambient temperature range
dimensions ($\mathrm{h} \times \mathrm{wx}$ d) attachment
protection housing / terminals weight

Order numbers:

AC/DC 24 V
T221923
AC 230 V T221925

c

AC $230 \mathrm{~V}, \pm 10 \%, 50 / 60 \mathrm{~Hz}, \leq 2 \mathrm{VA}$ AC/DC $24 \mathrm{~V}, \mathrm{AC} \pm 10 \%$, DC $21-30 \mathrm{~V},<2 \mathrm{VA}$, without potential separation $2 \times 1 \ldots 6$ PTC according to DIN 44081 or 44082 $<4000 \Omega$
2×1 change-over contact (co)
type 2 (see "general technical informations")
see "general technical informations"
$-20 \ldots+55^{\circ} \mathrm{C}$
design K: $75 \times 22.5 \times 110$ [mm]
on 35 mm DIN rail according to DIN EN 50022 or with screws M4 (option)
IP 30 / IP 20
approx. 145 g

PTC-Resistor-Relay Type MSR220K6 6 PTC-Circuits

MSR220K6

Art.-No.:
AC/DC24-240V T221958

Technical Data

The MSR220K6 monitors up to 6 PTC-reseitor sets with up to 6 PTCs each at the same time. If a temperature rise occurs in one set, the output relay releases and LEDs show the overheated sensor.
Switching-off is stored until a Reset. Thus enables to find the overheated sensor even when it has cooled down.

With the MSR220K6 only 4 mm space is needed per monitored PTC-circuit.
It is especially suitable for monitoring drives with multiple motors, like cranes or robots. Instead of the PTC-sensors also contacts (normally closed) can be connected.

- 6 PTC-resistor sets, each 1... 6 PTC
- Monitoring of short-circuit of sensor
- Output relay $1 \times$ change-over contact
- Electronic reclosing lock (disconnectible with bridge)
- Input for external RESET
- Automatic RESET at voltage recovery
- LED for power on (green)
- 6 LEDs for display of overheated sensor
- Universal supply voltage AC/DC $24-240 \mathrm{~V}$
- UL Recognized Component

Rated supply voltage Us
connectable PTC resistors switching point
output relay
Type of contact
test conditions
rated ambient temperaturer-
ange
dimensions ($\mathrm{h} \times \mathrm{w} \times \mathrm{d}$) attachment
protection housing / terminals weight

AC/DC 24-240 V, AC 19-264 V, DC 20-297 V, <2 VA
$6 \times 1 \ldots 6$ PTC according to DIN 44081 or 44082 <4000
change-over contact (co)
type 2 see "general technical informations"
see "general technical informations"
$-20 . .+55^{\circ} \mathrm{C}$
design K: $75 \times 22,5 \times 110$ [mm]
on 35 mm DIN rail according to DIN EN 50022 or with screws M4
IP 30 / IP 20
approx. 145 g

PTC-Resistor-Relay Type MSR820V
 8 PTC-Circuits

The MSR820V monitors up to 8 PTC-resistor-circuits at the same time. A common relay signals an alarm or an error in a sensorcircuit.
The inputs can be enabled or disabled during operation.
The MSR820V can also be used as a fault annuciator for collective reports

- 1-8 PTC-circuits, each 1... 6 PTC in series (max. coldresistance 1500 //circuit)
- Easy activating/deactivating of PTC-circuits (display with LEDs)
- 2 potential-free relay-outputs, display of switching state with LEDs
- Display of state of PTCcircuits with 2 LEDs per circuit
- Electronic reclosing-lock (disconnectible with bridge Y1-Y2)
- monitoring of contacts for collective fault-reports
- Programmable functions:
- Monitoring of short-circuit of PTCs (off / on)
- External Reset as normally closed (nc) or open (no) contact (Y1, Y2)
- Power-fail-safe reclosing lock (off / on)
- Function of relay
- K1 and K2 closed-current mode
- K1 and K2 operating-current mode
- K1 closed- and K2 operating-current-mode
- Universal supply-voltage AC/DC $24-240 \mathrm{~V}$
- Mounting on DIN-rail 35 mm EN 60715 or wallmount (Option)
- Mounting height 55 mm

Order-number: T221709

BR 1: Wiedereinschaltsperre abgeschaltet

AC/DC 24-240 V 0/50/60 Hz + 25/-20 \%, <1W, <3VA DC 20,4-297V AC 20-264V
8×1... 6 pieces according to DIN 44081/82
$3,3 \mathrm{k} \Omega \ldots 4 \mathrm{k} \Omega$ typical $3,65 \mathrm{k} \Omega$
2×1 change-over contact (CO)
AgSnO_{2}
see "general technical informations"
$-20 \ldots+55{ }^{\circ} \mathrm{C}$

Design V4: $90 \times 70 \times 58 \mathrm{~mm}$, mounting height 55 mm on rail NS 35 mm according to EN 60715 or with screws M4 (option)
IP 30 / IP 20
app. 180 g

PTC-Resistor-Relay Type MSM220K
 Lock Power-Fail Proof

MSM220K

The reclosing-lock of the PTCresistor relay MSM220K is po-wer-fail proof. Thus a tripping is being stored also over a loss of voltage.

The integrated TEST-button enables a simple test of the device and the connected system.

- 1 PTC resistor set 1... 6 PTC resistors
- output relay with 1 changeover contact (co)
- power-fail proof reclosing lock (disconnectible)
- integrated RESET-button
- link for externat RESET
- integrated TEST-button
- LEDs for operation and
- alarm

K-type housing, vertically arranged terminals, $22,5 \mathrm{~mm}$

- wide
assembly on 35 mm DIN rail or with 2 screws M4 (option)

Control voltage Us
connectable PTC resistors switching point output relay type of contact test conditions rated ambient temperature range dimensions ($\mathrm{h} \times \mathrm{w} \times \mathrm{d}$) attachment
protection housing / terminals weight

Order number:
AC 230/ 240 V
T221947

[^0]AC $230-240 \mathrm{~V} \pm 10 \% 50 / 60 \mathrm{~Hz}, 2 \mathrm{VA}$
1... 6 PTC according to DIN 44081 or 44082 < 4000Ω
1 change-over contact (co)
type 2 (see "general technical informations") see "general technical informations" $-20 \ldots+55^{\circ} \mathrm{C}$
design K: $75 \times 22.5 \times 110$ [mm] on 35 mm DIN rail according to DIN EN 50022 or with screws M4 (option)
IP 30 / IP 20
approx. 145 g

PTC-Resistor-Relay Type MS40ZT
 for Elevators

The PTC-resistor relay MS40ZT monitors particularly engines at elevator cars and lifts.
A pulse input monitors the movement of the elevator car as long as the motor is switched on.

- watchdog timing adjustable 5-50 s.
- temperature monitoring with PTC-resistor
- integrated RESET-button
- LED for temperatur alarm LED for watchdog alarm

At elevator systems the temperature of the motor and the travelling motion have to be monitored. With the car at rest and contact between terminals 2 and 5 closed, the integrated relay picks up (terminals 8, 9 connected). The time monitoring starts with the opening of the contact between terminals 2 and 5 . Then the pulse input between terminals 3 and 6 must continously open and close during travelling motion. When the pulse stops or the nominal

Rated supply voltage Us connectable PTC resistors switching point output relay type of contact test conditions rated ambient temperature range
dimensions ($\mathrm{h} \times \mathrm{wx}$) attachment
protection housing / terminals weight
response temperature of the PTC-resistor is exceeded, the relay releases. Each disconnection is locked. A restart by pressing the RESET-button is only possible with closed contact between terminals 2 and 5 and low-resistive sensor.

Order number:
AC 220-240 V T221120

AC $220-240 \mathrm{~V} \pm 10 \%, 50 / 60 \mathrm{~Hz}, 3 \mathrm{VA}$
1... 6 PTC according to DIN 44081 or 44082 < 4000Ω
1 change-over contact (co)
type 2 (see "general technical informations") see "general technical informations" $-20 \ldots+55 \infty \mathrm{C}$
design S 12: $82 \times 42 \times 121$ [mm] on 35 mm DIN rail according to DIN EN 50022 or with screws M4
IP 30 / IP 20
approx. 280 g

PTC-resistor relay type MSF220K
 for Dry-Transformers, 2 PTC-Circuits

${ }^{-1 / 4}$
Art.-numbers:

AC 220-240 V	T221718
AC/DC $24-240 \mathrm{~V}$	T221717

Technical Data

PTC-relay for the monitoring of dry transformers.
Alarm 1 with relay in closedcircuit current mode for preliminary warning, releases at over-temperature at PTC-set 1 and serves at the same time as functional monitoring.
Alarm 2 in operating current mode. Thus no wiping signal occurs when switching on the supply voltage on.
Additional terminals enable comfortable wiring from supply voltage to relays K1 and/or K2.

Rated supply voltage Us
connectable PTC resistors
switching point
output relays
type of contact
test conditions
rated ambient temperature range
dimensions ($\mathrm{h} \times \mathrm{wx} \mathrm{d}$)
attachment
protection housing / terminals weight

- 2-PTC resistor sets
- 2 output relays 1 change-over contact (co) / 1 normally open contact (no)
- monitoring of sensors for short-circuit and break activatable
- Test-button (delayed)
- LEDs for ON, alarm 1 and 2
- K-type housing, vertically arranged terminals, 22,5 mm wide
- for attachment on DIN rail 35 mm or with 2 screws M4

AC $220-240 \mathrm{~V} \pm 10 \%, 50 / 60 \mathrm{~Hz}, \leq 2 \mathrm{VA}$ AC/DC 24-240 V, AC 19-264 V, DC $20-297$ V <2VA
$2 \times 1 \ldots 6$ PTC according to DIN 44081 or 44082 < 4000Ω
1 change-over contact (co), 1 normally-open contact (no)
type 2 see "general technical information" see "general technical information"
$-20 \ldots+55^{\circ} \mathrm{C}$
design K: $75 \times 22.5 \times 110$ [mm]
on 35 mm DIN rail according to DIN EN 50022 or with screws M4
IP 30 / IP 20
approx. 110 g

PTC-Resistor-Relay Type MSF220SE
 for Dry-Transformers, 2 PTC-Circuits

MSF220SE

The MSF220SE is a 2-channel PTC resistorrelay. It is used favourably wherever an alarm has to be supressed for a short period when applying the supply voltage.

- 2 PTC resistor sets
- 2 output-relays with changeover contacts (co)
- integrated timing-relay K3 to suppress an alarm-impulse when switching on supply voltage
- ALARM 1, i.e. for preliminary alarm
- ALARM 2, i.e. for switching off power on green LED
- ALARM 1 yellow LED
- ALARM 2 red LED
- Test-button for testing of re-
- lays K1/K2 time-delayed signal (2-4s) of
- K3 available at terminal 1 for extarnal use

Thanks to the delayed switchingon of relay K3, the MSF 220 SE is especially suitable in applications, where an auxiliary voltage is not available and the secondary voltage of the monitored transfor-

Rated supply voltage Us
connectable PTC resistors switching point output relays type of contact test conditions rated ambient temperature range
dimensions ($\mathrm{h} \times \mathrm{wx}$) attachment
protection housing / terminals weight
mer is being used as supply voltage.
As a consequence of this feature, there will be no alarm case of failure of supply voltage. We recommend therefore the monitoring of the function of K3 at terminals 1 or 7 .

Order numbers:
AC/DC 90-240 V T221697
AC/DC 24-240 V T221696

AC/DC 90-240 V, AC 80-264 V, DC 80-297 V, < 2 VA AC/DC 24-240 V, AC 20-264 V, DC 21-297 V, < 2 VA $2 \times 1 \ldots 6$ PTC according to DIN 44081 or 44082 < 4000Ω
2×1 change-over contacts (co)
type 2 see "general technical information"
see "general technical information"
$-20 \ldots+55^{\circ} \mathrm{C}$
design S 12: $82 \times 42 \times 121$ [mm]
on 35 mm DIN rail according to DIN EN 50022
or with screws M4
IP 40 / IP 20
approx. 290 g

PTC-Resistor-Relay Type MSF220V/VU
 for Dry-Transformers, 3 PTC-Circuits

MSF220V/
 MSF220VU

Art.-numbers:

MSF220V AC 230/240 V T221738 MSF220VU AC/DC 24-240 V T221737

The MSF220V is particularly suitable for the temperature monitoring at dry transformers.
3 PTC-circuits with different nominal response temperatures (NRT) can be connected to this unit, one for controlling an fan (forced cooling) and two for alarms.
Each PTC-circuit is monitored for break and short circuit. This reduces the probability of false alarms.

- 3 PTC-circuits
- MSF220VU for universal supply voltage AC/DC 24-240 V
- intelligent control of fan (relay KO, 1 normally-open contact)
- ALARM 1 in closed-circuit current mode (relay K1, 1 change-over contact) for prealarm. Signals also error in any sensor and interruption of supply voltage.
- ALARM 2 in operation current mode (relay K2, 1 changeover contact). No signal when switching on ond off the supply voltage.
- all output relays potentially separated from each other.
- monitoring of sensor lines
- TEST-button (stop possible before ALARM 2)
- simple testing with disconnectable monitoring of break and
short-circuit (for 10 minutes)
- LEDs for ON, sensor error, Fan, ALARM 1 and ALARM 2
- UL Recognized Component
- plug-in terminals
- housing for mounting on DIN-rail or wall-mount mounting height 55 mm

AC $220-240 \mathrm{~V} \pm 10 \%, 50 / 60 \mathrm{~Hz}, \leq 3 \mathrm{VA}$
AC/DC $24-240 \mathrm{~V} \pm 15 \%,<3 \mathrm{VA}$
$3 \times 1 \ldots 6$ PTC according to DIN 44081 or 44082 < 4000Ω
2×1 change-over contacts, 1 normally-open contact type 2 see "general technical information" see "general technical information" $-20 \ldots+55^{\circ} \mathrm{C}$
design V 4: $90 \times 70 \times 58[\mathrm{~mm}]$
on 35 mm DIN rail according to DIN EN 50022 or with screws M4
IP 30 / IP 20
approx. 320 g

PTC-Resistor-Relay Type MSF220VL for Dry-Transformers, Fan, Warning, Trip Winding and Trip Core

Art.-no: T221674

The MSF220VL is particularly suitable for monitoring of temperatures at dry transformers, when also the temperature of the core shall be measured. Monitoring of core temperature is especially required in rectifier transformers because of harmonics causing heat in the core. An intelligent control prolongs automatically the runtime of a cooling-fan, depending on the load of the transformer. Each PTC-circuit is monitored for break and short circuit. This reduces probability of false alarms. Relaysinoperating-currentmode prevent from a trip-signal when switching on supply voltage.

Technical Data

Rated supply voltage Us
connectable PTC resistors
switching point
output relays
type of contact
test conditions
rated ambient temperature range
dimensions ($\mathrm{h} \times \mathrm{w} \times \mathrm{d}$) attachment
protection housing / terminals weight

The device can be adapted to different applications with 4 programs:
1.) Fan-control - alarm - trip (winding) - trip (core)
2.) Alarm - trip (winding) - trip (core) - alarm (fault)
3.) Fan-control - alarm - trip (winding) - alarm (fault)
4.) Fan-control with hysteresis $\mathrm{T} 1 / \mathrm{T} 2$ - alarm - trip (winding) - time relay

- 4 inputs for PTC
- Intelligent control of fan
- Automatic fan-test $1 \mathrm{x} /$ week
- electronic reclosing lock for alarms (trip) connectable
- Monitoring of sensors
- Test-button
- Simple testing with disconnectable monitoring of break and short circuit (for 10 minutes)
- LEDs for alarms, states of relays and sensors
- Housing for mounting on DIN-Rail or wall-mount (option)
- Mounting height 55 mm
- Universal supply voltage AC/DC $24-240$ V

AC/DC 24-240V $\pm 15 \%,<3 \mathrm{VA}$
4×1... 6 PTC according to DIN 44081 or 44082 < 4000Ω
4×1 change-over contacts
type 2 see "general technical information"
see "general technical information"
$-20 \ldots+60{ }^{\circ} \mathrm{C}$
design V 4: $90 \times 70 \times 58[\mathrm{~mm}]$
on 35 mm DIN rail according to DIN EN 50022
or with screws M4
IP 30 / IP 20
approx. 185 g

Transformer-Protection Trafosafe TS1000 with integrated monitoring of Fans

Trafosafe TS1000

The Trafosafe TS1000 is applied at transformers with forced cooling.
It monitors the temperature of the transformer with 3 sensor-circuits (PTC-thermistors), controls the forced cooling depending on the load of the transformer, reports exceeding of alarm-temperature and switches off the transformer (trip) when increasing of the temperature continues.

Up to 6 fans can be controlled and monitored directly with the TS1000. Contactors and motor protection switches are not necessary any more.

At Pt 100-monitored transformers the TS1000 can be used to control only the fans.

Temperature-Monitoring:

- 1 PTC-circuit for controlling the cooling (1T1/1T2) = input for starting fan when using as fan-control only.
- 2×1 PTC-circuit for alarm 1 (2T1/2T2) and alarm 2/ trip ($3 \mathrm{~T} 1 / 3 \mathrm{~T} 2$), monitored for
- short-circuit and interruption Alarm 1 (K2) in closed-circuit current mode $=$ monitoring of function
- Alarm 2/trip (K3) in opencircuit current mode $=$ no signal/tripping when switching on the device
- Test-/Reset-button for testing the function

Fan-Control and Monitoring of Fan:

- direct connection of up to 6 fans $0,07 \ldots 4,0 \mathrm{~A}$
- automatic exceeding of the on-time of the fans at high load of the transformer
- Monitoring of failure fan (over-/undercurrent)
- Self-calibration of the monitored values of the currents to the fans
- Switching-point for current-failure adjustable \pm 5-40 \%
- automatic test of fans 1-30 days, disconnectable
- Relay for reporting fan-failure
- Clear displays with LEDs

General:

- Universal-power-supply AC/DC 24-240 V
- compact hausing for cabinet-mount, 140 mm wide, mounting height 55 mm
- Attachment on 35 mm rail or with 3 screws M4

Supply voltage Us
Tolerance
Connectable PTC-circuits
Switching point
Output relays K2, K3, K4
Type of contact
Output relays 1-6
Rated current of fans
Test conditions
Rated ambient temp. range
Dimensions ($\mathrm{h} \times \mathrm{w} \times \mathrm{d}$)
Attachment
Protection housing / terminals Weight

AC/DC 24-240 V, 0/45-120 Hz, < $2 \mathrm{~W},<4 \mathrm{VA}$ DC 20,4-297 V, AC 20-264 V
$5 \times 1 \ldots 6$ pcs according to DIN 44081 or 44082
$<4000 \Omega$
3×1 change-over contact (co)
type 3 (see "general technical informations")
6×1 normally-open contact (no)
0,07...4,0 A
see "general technical informations"
$-20 \ldots+55^{\circ} \mathrm{C}$
housing V8: 90x140x8 [mm], mounting height 55 mm on DIN-rail 35 mm or 3 screws M4
IP 30 / IP 20
app. 400 g

MS-Tester

for PTC-Relays Type MS

Simple PTC-relays can be easily tested by interrupting the sensor-line.
AtPTC-relays with monitoring the sensor for short-circuit and break this is not possible.
With the ZIEHL MS-Tester these relays can also be tested easily for correct function.

Test:

- Turn off supply-voltage of the tested relay
- disconnect output-side if necessary
- connect MS-Tester (T/0, T/1 and/orT/2) tothe sensorinputs
- switch on PTC-relay
- increase resistance slowly by turning the potentiometer until the according alarm switches
- reduce resistance until the relay in the MS switches back or the LED signals ready for switching back

The connection-cable (included) is cabled for the connection to a ZIEHL MSF220V(U), but other PTC-relays can be tested with the MS-Tester also.

- If necessary, the accurate switching-points can be evaluated by measuring the resistances between the terminals $\mathrm{T} / 0, \mathrm{~T} / 1$ and $\mathrm{T} / 2$ after disconnecting the MS. The values are typically 3000Ω to 4000Ω for tripping and >1500 Ω for switching back.
- Test break of sensor with button (only relays with monitoring of sensor-break)
- Test short-circuit of sensor with button (only relays with monitoring of sensor-short-circuit))
- ATTENTION:AtMSF220 V(U) short-circuitorbreak of any sensor or fast rising of resistance will lead to a report of an error = alarm 1.
- TIP: Cold PTC have a resistance of 20 ... 250Ω, typically 50 ... 120Ω per sensor.

Order-number: T221734

PTC-Resistor Temperature-Sensors MINIKA ${ }^{\circledR}$ to DIN 44081 and DIN 44082

General

PTC-resistor temperature sensors (also called PTC-resistors or thermistors) are temperatur dependent semiconductor resistors whose main function is to alter their electrical resistance drastically when their body temperature reaches the nominal trip temperature NAT (TNF)

PTC-resistors are used principally to protect windings in electromotors or transformers against excess temperature. They also find application in machines, tooling machines especially machine bearings and controlling the temperature of power semiconductors.

PTC-resistor temperature sensors are particularly suited to this purpose due to their precise response range combined with small dimensions and minimal thermal inertia at low cost.

Single PTC-resistor type MINIKA ${ }^{\circledR}$ K

PTFE-insulated strand
Cu, silver-plated
Lead length: $500 \pm 10 \mathrm{~mm}$
Stripping of lead-ends 10 mm standard cross-section:
$0,14 \mathrm{~mm}^{2}$ (AWG 26)
weight: approx. 2,6 g

Triple PTC-resistor type MINIKA ${ }^{\circledR}$ KD

PTFE-insulated strand Cu , silver-plated Lead length: $500-180-180-500 \pm 10 \mathrm{~mm}$ Stripping of lead ends 10 mm standard cross-section:
$0.14 \mathrm{~mm}^{2}$ (AWG 26)
weight: approx. $3,6 \mathrm{~g}$

Type	NAT $^{\circ} \mathrm{C}$	Standard ID colour (DIN 44 082)	Order-no. MINIKA
KD60	60 ± 5	white - yellow - yellow - grey	K401300
KD70	70 ± 5	white - yellow - yellow - brown	K401310
KD80	80 ± 5	white - yellow - yellow - white	K401305
KD90	90 ± 5	green - yellow - yellow - green	K401315
KD100	100 ± 5	red - yellow - yellow - red	K401325
KD110	110 ± 5	brown - yellow - yellow - brown	K401335
KD120	120 ± 5	grey - yellow - yellow - grey	K401345
KD130	130 ± 5	blue - yellow - yellow - blue	K401355
KD140	140 ± 5	white - yellow - yellow - blue	K401365
KD150	150 ± 5	black - yellow - yellow - black	K401375
KD160	160 ± 5	blue - yellow - yellow - red	K401385
KD170	170 ± 5	white - yellow - yellow - green	K401395
KD180	180 ± 5	white - yellow - yellow - red	K401390

Screw-in sensors in housing G2 (M4) and G3 (M6) MINIKA ${ }^{\circledR}$ KS

PTFE-insulated strand
Cu , silver-platedd Lead length:
$500 \pm 10 \mathrm{~mm}$
Stripping of lead ends 10 mm standard cross-section: $0.14 \mathrm{~mm}^{2}$ (AWG 26)
weight: G2: approx. 5 g
G3: approx. 14 g

Technichal Data

Design	K	KD	KS
Max. operational voltage	25 V DC	25 V DC	25 V DC
Measuring voltage at NAT+15K $-20 . . . N A T+5 K$	$\begin{aligned} & \leq 7,5 \vee \mathrm{DC} \\ & \leq 2,5 \vee \mathrm{DC} \end{aligned}$	$\begin{aligned} & \leq 7,5 \vee \mathrm{DC} \\ & \leq 2,5 \vee \mathrm{DC} \end{aligned}$	$\begin{aligned} & \leq 7,5 \vee \mathrm{DC} \\ & \leq 2,5 \vee \mathrm{DC} \end{aligned}$
Nominal response temperature NAT (TNF)	$60 . .180^{\circ} \mathrm{C}$	$60 . .180^{\circ} \mathrm{C}$	$80 . . .180^{\circ} \mathrm{C}$
Tolerance NAT	$\pm 5 \mathrm{~K}$	$\pm 5 \mathrm{~K}$	$\pm 5 \mathrm{~K}$
Nominal resistance R at -20...NAT-20K VPTC $\leq 2,5 \mathrm{~V}$	$\leq 250 \Omega$	$\leq 750 \Omega$	$\leq 250 \Omega$
Rated ambient temperature range	$-20^{\circ} \mathrm{C}$...NAT $+20^{\circ} \mathrm{C}$		
Thermal response-time ta	$\leq 5 \mathrm{~s}$	≤ 5 s	-
Storage temperature	$-25^{\circ} \mathrm{C} \ldots+65^{\circ} \mathrm{C}$		
Rated insulation voltage Ueff	690 V	690 V	690 V
Test voltage Ueff	2500 V AC	2500 V AC	2500 V AC

Resistors

The resistance of each individual sensor (according to standard) must, for temperatures related to the Nominal Response Temperature (NAT), have the following values:
≤ 250 Ohms at temperatures of $-20^{\circ} \mathrm{C}$ to NAT - 20 degrees. Measurement voltage up to max. 2.5 V
≤ 550 Ohms at a temperature of NAT-5 degrees. Measurement voltage max. 2.5 V
≥ 1330 Ohms atatemperature of NAT +5 degrees. Measurement voltage max. 2.5 V
≥ 4000 Ohms at a temperature of NAT + 15 degrees. Measurement voltage max. 7.5 V

The exact values of the resistance values in the temperature ranges are not relevant. Flawless sensors should have a cold resistance of between 20 and at most 250 Ohms. Typical values (ambient temperature) lie between 50 - 150 Ohms.

When the cold resistance is within these limits, short-circuit and interruption can be excluded. For checking the nominal response temperature, the sensors have to be heated up to this temperature.

In accordance with standards, trip devices switch between 1650 Ohms and 4000 Ohms.

For built-in PTC-resistors, we recommend the following nominal cut-off temperature values for machines which are used to full capacity within permissible heating limits in keeping with their insulation class (VDE 0530).

These values can then be corres pondingly reduced for machines at less than full capacity. In some instances it might prove necessary to work out nominal response temperature values which deviate somewhat from

If a varying number of temperature sensors connected in series to a trip device are subjected to uniform heat, this results in the following cut-off point:

- 1 PTC switches at latest at NAT +15 degrees, at earliest at NAT +5 degrees.

3 PTC (typical instance) switch at latest at NAT +5 - degrees, at earliest at NAT -5 degrees.

6 PTC switch at latest at NAT, at earliest at NAT -20 degrees.
(Absolutely uniform heating of all sensors virtually

- never occurs in this instance).

the values recommended in the table, on the basis of trial and error. When it is intended as a preliminary warning, the value recommended as nominal response temperature is $20^{\circ} \mathrm{C}$ below the break temperature.

Insulation material class
120 (E) $\quad 130$ (B) $\quad 155$ (F) $\quad 180(\mathrm{H})$
$120^{\circ} \mathrm{C} \quad 130^{\circ} \mathrm{C} \quad 150^{\circ} \mathrm{C}$

Fitting PTC-resistor temperature sensors

Testing fitted
PTC-resistors

PTC-resistors can only be fitted before a winding has been impregnated by the motor manufacturer. It is not possible to insert them at a later stage.

Each winding has a sensor of its own. This means fitting 3 in single-speed motors and 6 in pole changing motors, with these sensors arranged in series and taken to separate terminals in the terminal box.

Measuring circuit must be provided with a separate power supply. The use of motor supply lines or other main current lines is unacceptable. Shielded supply lines must be used in case inductive or capacitive interference is produced by nearby high-voltage lines.

The maximum line lenght for a cable diameter of $0.5 \mathrm{~mm}^{2}$ is approx. 500 m . For greater diameter cable, correspondingly more.

Fitting should, where possible, be carried out at the warmest winding head in the exhausted-air-side of the electrical machine. Care should be taken to ensure good heat contact between the sensors and the winding when being fitted. The more intimate the connection between a PTCresistor and its winding, the better the winding temperature is registered, especially when temperatures rise sharply. For this reason, Temperature sensors should be implanted in the middle of the end winding-heads so as to be surrounded on all sides by the winding copper.

A maximum DC-voltage of 2.5 V can be passed through PTCresistor temperature sensors when testing. Buzzers (voltage peaks) and similar testers should, therefore, not be used, but only meters or bridges.

For all measurement voltage values up to DC 2.5 V , resistance

To fit the temperature sensors, the ready-shaped winding heads are spread apart in the centre using a piece of winding wood. The temperature sensors should be inserted parallel to the winding wires, care being taken that the winding wires are actually touching the temperature sensors. Cavities and air-occlusions impair heat contact and can be minimized by exerting pressure by hand to close the gap between winding wires and sensors. At the spot where the sensors are to be fitted, the winding wires on the end winding should be tightly bandaged. If the wire is more than 1 mm^{2} thick, intervening spaces should be filled in with resin thickened with quartz powder.

If the motor manufacturer uses special saturants or impregnating resins whose chemical behaviour is anything but neutral, or if he uses some special working method, he will have to test the temperature sensors' resistivity himself in the operating conditions he will use.

To prevent peaks in interference voltage due to the formation of loops, we recommed that the connecting strand be fed back on the same side as the lead.

Assembly Tip: Do not shorten leads which are too long, roll them up and fasten them in position.
values ranging from $-20^{\circ} \mathrm{C}$ to NAT -20 degrees should notexceeded 250 Ohms. Exact resistance values within this temperature range are unimportant. For flawless sensors, the lowest resistance value is generally above 20 Ohms.
When measurement values are being determined, care must be taken that the measurement results are not influenced by the selfwarming of the sensors. In the course of the manufacturing process, we test all sensors for NAT and disruptive strength.

Pt 100-Temperature-Relays Type TR

General
Temperature relays type TR monitor temperatures in connection with temperature sensors Pt 100 according to
DIN 43760 / IEC 751. They signal or switch, if a preset limit is exceeded.

They operate according to standard with relays in closed-circuit current mode. Break of sensor is recognized. In some models also short-circuit of sensor line is monitored.

The temperature relays type TR have the following features:

| type | connectable
 sensors
 Pt 100 | connection
 2-wire 3-wire
 technque | adjustable
 limits | output
 relays | analog
 output | housing | remarks |
| :--- | :---: | :---: | :---: | :---: | :---: | :--- | :--- | :--- |

Application

Temperature relays type TR and temperature sensors Pt 100 are a reliable monitoring system Possible damage by excess temperature in machines and plants are positively avoided.

Typical for all devices is exact recording of temperatures and constant switching points.

For the monitoring of engines or transformers devices with 3 to 6 inputs are especially suitable. They can monitor a sensor in the coil of each phase.

If the measuring temperature is to be displayed additionally or be evaluated by a superior computer system, devices with analogue output or interface RS 485 are recommended.

We supply temperature sensors Pt 100 in many various executions, according to customer's request and with isolation for high voltages.

Pt 100-Temperature-Relay Type TR111V

 1 Sensor

 1 Sensor}TR111V
3-wire

Temperature-Relays TR111V can be used as limit-switches or 2-point controllers with high repeat accuracy.
3 measuring-ranges, adjustable hysteresis and switching delay and the choice between opera-ting- and closed-current principle of the relay make it a very universal device.

- Measuring input 1x Pt 100 (RTD) / 3-wire
- measuring-ranges selectable: - -10...+40/0... $100 / 0 \ldots . .200^{\circ} \mathrm{C}$
- 0...100/100...200/200...300/ $300 \ldots 400^{\circ} \mathrm{C}$
- 1 limit adjustable 0... 100 \% switching delay adjustable $0,1 \ldots 10 \mathrm{~s}$
- Output-relay 1 changeovercontact (co)
- Operating- or closed-surrentmode selectable with bridge
- Switching off at sensor-shortcircuit or break
- LEDs for display state of operation
- Universal supply-voltage AC/ DC 24-240 V
- Housing for mounting in switchgear cabinets or fuseboxes, 35 mm wide Mounting heigt 55 mm

Technical Data
Supply voltageUs

Pt 100 -Sensor (RTD)
Measuring ranges
Error of setting
Repeat error
Temperature-dependence
Hysteresis
Switching delay don/doff
Relay output
Type of contact
Test conditions
Rated ambient temperature range

Dimensions (H x W x D)
Attachment
Protection housing/terminals Weight

Application:

Protection from over-temperature in processes, plants and machines. Monitoring of temperatures in bearings.
Controlling of temperatures in processes and plants.
Order-number:

$-10 \ldots+200^{\circ} \mathrm{C}$	T224107
$0 \ldots . .400^{\circ} \mathrm{C}$	T224108

1) Ruhestrom / closed current mode
2) Arbeitsstrom / operating current mode
3) 3-Leiter / 3-wire
4) 2-Leiter / 2-wire

Brücke zwischen T2-T3 / Bridge from T2-T3

AC/DC 24-240 V, 0/50/60 Hz, < 2W, < 3VA (DC 20,4-297, AC 20-264 V)

EN 60751 / IEC 60751
ranges selectable
$\pm 5 \mathrm{~K}$
app. 0,5 K
<0,05 \%/K
adjustable $2 . . .10 \mathrm{~K}$
adjustable 0,1... 10 s
1 change-over contact (co)
type 3 see "general technical informations" siehe "general technical informations"
$-20^{\circ} \mathrm{C} \ldots+55^{\circ} \mathrm{C}$
design V4: $90 \times 70 \times 58$ [mm], mounting height 55 mm on 35 mm DIN-rail according to EN 60715 or with screws M4
IP 30 / IP 20
app. 100 g

Pt 100-Temperature-Relay Type TR122DA

1 Sensor, 2 Limits, Digital display, Analog-output

TR122DA

Function

The TR122DA is a temperature relay with 2 independant switching points and with analog output.

Applications:

- Monitoring oftemperature with pre-alarm and alarm
- Monitoring of under-and overtemperature
- 2-point-controller, e.g. for heating (the second switching point can be used for monitoring the function and release an alarm at over- or under-temperature) 3-point-controller for heating/ keeping temperature
- Monitoring of resistance 0... 850 Ohm
- Transducer for Resistance
- 1 sensor Pt 100 (RTD) 2- or 3-wire-connection
- Range -199... $+850^{\circ} \mathrm{C}$
- Resistance $0 . . .850 \Omega$
- 2 alarms/relays (co- contacts)
- Digital display, 3 digits
- Monitoring of sensor (break/ short-circuit)
- Display of MIN- and MAXvalues
- scalable analog output 0/4... 20 mA (TR 122 DA only)
rated supply voltage Us
sensor Pt 100 (RTD)
connection
measuring accuracy measuring current connection of sensor
analog output
measuring range
resolution
hysteresis
switching delays
relay-contact
test conditions
rated ambient temp. range
dimensions ($\mathrm{h} \times \mathrm{w} \times \mathrm{d}$)
attachment
protection housing / terminals weight

Order-numbers:
TR122DA with analog output
T224126
TR122D without analog output
T224127

- Universal supply voltage AC/DC $24-240 \mathrm{~V}$
- Plug-in housing for easy mounting and service

The following parameters can be programmed:

- Switching points (alarms)
- Hysteresis (+ or - = MIN or MAX-function)
- Relay in closed- or operating current mode
- automatic reset or electronic reclosing lock
- switching- and switch-back-delay
- Analog output
- EasyLimit for simplyfied setting of alarms
- Code-lock against manipulation of settings

AC/DC 24-240 V, <3W, <5VA
(AC 20-264 V, DC 20,4-297 V)
Pt 100 according to EN 60 751/IEC 60 751,
Resistance 0... 850 Ohm
line-resistance max. $3 \times 22 \Omega / 2 \times 10 \Omega$
$<0,3 \%$ of value $\pm 0,5 \mathrm{~K}(\Omega)$
$\leq 0,8 \mathrm{~mA}$
2-/3-wire, line-resistance max. $2 \times 50 \Omega / 3 \times 50 \Omega$
0/4-20 mA, max. 500Ω, error $<0,3 \%$ of fullscale
-199 ... $+850^{\circ} \mathrm{C} / 0$... 850Ω
$1 \mathrm{~K}(\Omega),-19,9 \ldots 99,9: 0,1 \mathrm{~K}(\Omega)$
$\pm 200 \mathrm{~K}$
0... 999 s
type 2 (see "general technical informations")
see "general technical informations"
$-20^{\circ} \mathrm{C} . .+55^{\circ} \mathrm{C}$
design S12: $82 \times 42 \times 121$ [mm]
on 35 mm DIN rail according to DIN EN 50022 or with
screws M4
P 30 / IP 20
app. 300 g

Temperature Relay Type TR210
 for 2 Temperature-Sensors or 0/4-20 mA, 0-10 V, 2 Limits, Analog-output

TR210

Function

The control unit TR210 monitors up to 2 measuring inputs for Pt100 (RTD), Pt1000, thermocouples, or standard-signals 0/4-20 mA, 0-10 V.
The signals are monitored for up to 4 limits. The value of one or of both inputs can be read out at an analog output.

- Measuring and monitoring range $-270 \ldots+1820^{\circ} \mathrm{C}$
- resolution $0,1^{\circ} \mathrm{C}$ (to $999.9^{\circ} \mathrm{C}$)
- Analog output (scaleable) for 1 input, min./max. of 2 inputs or difference of 2 sensors (no isolation between inputs and output)
- 2 relay outputs
- Shifting of day/night (selectable with contact at terminals Y1/Y2)
- Universal power supply AC/ DC 24-240 V
- Easy setting with 3 buttons and preset programs
- Storing of min- and maxvalues of inputs
- Code-lock against manipulation of settings
- Terminals pluggable

2 Measuring-Inputs:

- Resistance-sensors Pt100 (RTD), Pt1000, KTY83/84 in 2- or 3-wire-connection
- Thermocouples types B, E, J, K, L, N, R, S or T
- different sensors at both inputs possible
- Standard-signals 0/4-20 mA, 0-10 V (scaleable)

Displays:

8 4-digit for measuring value

- 2 LEDs for state of relays
- 3 LEDs sensor/difference 2 LEDs day/night

Application:
The TR210 is very versatile and can thus be used in many applications. Nevertheless multiple preset programs allow an easy setting.
It can be used as a limit switch or as a controller for 2 limits (with day/night shift up to 4 limits).
As a measuring transducer it can convert signals from the temperature-sensors to standard-signals or change the scaling of standard-signals. The user can also select, if minimum or maximum of 2 signals or the difference of 2 signals is connected to the analog output.
For more applications see basic programs.

Switching-Functions:

- 2 relays (co-contacts)
- 2-4 limits
- Warmest/coldest sensor switches relay
- Programmable for every relay:
- hysteresis (+ or - = MIN- or MAX-function) -199.9...999.9 s
- autoreset or electronic reclosing lock
- delay-time for switching and switching back 0... 9999 s
- operating- or closed current-mode
- cyclic check of function
- Monitoring of difference in temperature
- Preset basic programs

Basic Programs

Technical Data

Program 1:
1 Temperature-sensor, 2 Limits
Application: Monitoring of a temperature for 2 limits, e.g. overtemperature with warning and switchjing off or monitoring of a temperature-range (min/max).

Program 2:
2 Temperature-Sensors,
1 Limit for each Sensor
Application: Monitoring of 2 temperatures for 1 limit each, e.g. over.temperature or as double electronic controller.

Program 3:
1 Temperature-Sensor,

2 Limits each day/night

Application: Controlling of a temperature with first limit, different for day and night.
Monitoring of the same temperature with second limit, different for day and night.

Program 4:
2 Temperature-Sensors, each 1 Limit for day/night
Application: Monitoring or controlling of 2 temperatures for 2 limits, depending on operation mode, e.g. controlling of 2 circulation pumps (day/night) or of processes (active/stand-by).

Program 5:

2 Temperature-Sensores for monitoring of differences in temperature, 2 Limits
Application: Regulation or monitoring of the difference of 2 measuring-points for 2 limits, e.g. circulation pumps in solar systems.

Rated supply voltageUs
2 Measuring inputs

Measuring-time
Analog output

Relay output

Test conditions
Rated ambient temperature renge

Dimensions $\mathrm{h} \times \mathrm{wxd}$
Protection housing / terminals
Weight
Attachment

Program 6:

1 Standard-Signal 0/4-20 mA or 0-10 V, 2 Limits
Display can be scaled, e.g. measuring input 4-20 mA = display 0... $1200 \mathrm{l} / \mathrm{h}$.
Application: Monitoring of signals from a measuring transducer for 2 limits, e.g. over- or under-exceeding of limits with pre-alarm and alarm or monitoring of a signalrange (min/max) and/or as measuring-transducer. In combination with any measuring-transducers, signals like pressure, volume-flow, pH -value, ... can be monitored.

Program 7:

2 Standard-Signals $0 / 4-20 \mathrm{~mA}$ or $0-10 \mathrm{~V}$, 1 Limit each
Display can be scaled, e.g. measuring input 4-20 mA = display 0... $1200 \mathrm{l} / \mathrm{h}$.
Application: Monitoring of signals from 2 measuring transducers, each for 1 limit, e.g. over- or under- exceeding of a limit as double electronic controller.

Program 8:

2 Standard-Signals $0 / 4-20 \mathrm{~mA}$ or $0-10 \mathrm{~V}$ for monitoring of differences of signals
Application: Regulation or monitoring of the difference of 2 analog signals for 2 limits, e.g. levels of liquids.

Program 9:

2 Temperature-Sensors, 2 shared Limits
Application: Coldest (MIN) or warmest (MAX) sensor switches relay. Monitoring of 2 bearings for pre-alarm and alarm.

Application as Measuring-Transducer:
At programs with 1 measuring-input the output can be scaled for this input, e.g. $0 . .200 .0=4-20 \mathrm{~mA}$.
At programs with 2 measuring-inputs the output can be scaled for 1 input or min- or max- value of both inputs.
At programs for measuring of differences output can be scaled for 1 signal or for the difference input 2 minus input or for min- or max- value of both inputs.
Thus the TR 210 can be used as limit value switch and/ or measuring-transducersimultaneously. The measured values ca be forwarded to e.g. a remote display or a superior control.

AC/DC 24-240V, <3W, <7VA
(AC 20-264 V, DC 20,4-297 V)
Pt 100, Pt 1000 according to EN 60751
Thermocouples types B, E, J, K, L, N, R, S, according to EN 60 584, DIN 43710
0/4-20 mA (22 2), 0-10 V (13 k Ω)
$<2,5 \mathrm{~s}$ to 5 s , depending on speed of change of signal
0/4-20 mA, max. $500 \Omega .0-10 \mathrm{~V}$, max. 10 mA
(without isolation to inputs)
type 3, see "general technical informations"
2×1 co- (change-over) contact
see "general technical informations"
$-20 \ldots+65^{\circ} \mathrm{C}$
design V4: $90 \times 70 \times 58$ [mm], mounting height 55 mm
IP 30 / IP 20 (terminals pluggable)
app. 200 g
on 35 mm DIN-rail or with screws M 4

Pt100-Temperature-Relay Type TR250

3 Sensors Pt 100 (RTD), Pt 1000, PTC or KTY, 3 Limits NEW: Alarm counter and preset programs for use with PTC thermistors only

Art.-no: T224190

The Pt100 thermostat TR250 monitors up to 3 sensors Pt100 (RTD), Pt1000, KTY83 KTY84 or thermistors (PTC) at the same time. Different types of sensors, e.g. Pt 100 and PTC can be monitored simultaneously.
The unit is especially suitable for monitoring motors, generators and transformers.

An other application is the use as a 2- or 3-step-controller with additional monitoring of over- or under-temperature. monitoring of differences in temperatures of 2 sensors or temperature controller for heat pumps.

3 Sensor-Inputs:

- Pt100/1000, 2- or 3-wire connection, KTY83, KTY84
- Thermistors (PTC) each 1... 6 in series
- Monitoring of short-circuit and break

Displays:

- 3 digit 7 -segment-display for temperature and programming
- 3LEDsforsensors, for alarms/ relays
- display ${ }^{\circ} \mathrm{C}$ or ${ }^{\circ} \mathrm{F}$ selectable, resolution $0.1^{\circ} \mathrm{C}$

Rated supply voltage Us
Sensor connection

Measuring accuracy
Sensor-current Connection

Measuring range
Hysteresis
Switching delay on/off
Type of contact
Test conditions
Rated ambient temperature
range
Dimensions ($\mathrm{h} \times \mathrm{wx}$ d)
Protection housing / terminals
Weight
Attachment

Switching-Functions

- 3 relays
- warmest/coldest sensor switches relay
- prgrammable for every relay:
- hysteresis
- autoreset or electronic reclosing lock
- delay-time for switching and switching back
- operating- or closed current-mode
- cyclic check of function
- monitoring of difference in temperature

6 preset programs:

- motor / generator with 3x Pt 100
- transformer with $3 x$ Pt 100
- transformer with $2 \times$ PTC / $3 x$ PTC
- transformer with $2 x$ PTC and $1 \times$ Pt 100
- 3×1 alarm per sensor

AC/DC 24-240 V (AC 20-264 V, DC 20-297 V)
$3 \times$ Pt100 (DIN 43 760/IEC 751) (RTD)
$3 \times$ Pt1000, KTY83, KTY84
$3 \times 1 \ldots 6$ PTC (DIN 44080/44081)
$<0,5 \%$ of value $\pm 1 \mathrm{~K}$
$<1 \mathrm{~mA}$
3-wire, 2-wire, line-resistance max. $2 \times 50 \Omega$
$-199 \ldots+850^{\circ} \mathrm{C}$
$-99 \ldots+99^{\circ} \mathrm{C}$
0... 99 s / 0... 999 s
type 2 (see "general technical information")
$3 x$ change-over / alarm
see "general technical information"
$-20^{\circ} \mathrm{C} \ldots+65^{\circ} \mathrm{C}$
V4: $90 \times 70 \times 58$ [mm], mounting height 55 mm P 30 / IP 20
app. 200 g
on 35 mm DIN rail or with screws M4

Pt100-Temperature Relays type TR400

Digital, 4 Sensors, 4 Limits

Art.-no: T224380

The Pt100 thermostat TR400 is a temperature controller and monitors up to four Pt100 (RTD) sensors at the same time. Four switching points and four relays permit almost any combination of switching action. It also can select the highest temperatur of a group of three or four sensors. The temperatures of two sensors or groups of sensors can be issued

Function

Function overview

- Measuring and monitoring range $-199 \ldots+800^{\circ} \mathrm{C}$
- 4 sensor inputs with 2 - or 3-wire connection
- 4 relay outputs K1 to K4 with change-over contact
- Sensor Error Relay K7 monitors sensor break or sensor short circuit as well as an interruption of the powersupply.
- 2 analog outputs, 0/4... 20 mA and 0/2... 10 V , with individual scaling.
- Universal power supply. 2 ranges AC/DC 24-240 V USB-Stick-Terminal for up-
- and download of sets of parameters and for firmwareupdates
to 2 analog outputs i.e. for remote displays or further evaluation. Programming is very variable and simple.

Due to the fact that 4 type Pt100 sensors can be connected, the unit is especially suitable for temperature monitoring wherever up to 4 different measuring points must be monitored simultaneausly:

- machines, bearings, plants
- motors and generators with simultaneous monitoring of bearing orcoolant
- transformers with additional monitoring of the core temperature also

Displays

- built-in 3 digit temperature display and 1 digit programm-mode display
- LED Alarm showing state of the alarm relays
- LED Sensor Error blinking at sensor short circuit or sensor interruption.
- Stored Values of MIN- and MAX- temperature can be displayed
- „Sensor select" showing temperatures of the different sensors „Alarm select" showing switching points .

Rated supply voltage Us	tolerance DC-supply tolerance AC-supply	AC/DC $24-240$ V DC 20,4... 297 V AC 20... 264 V
	power consumption frequency	$\begin{aligned} & <4 \mathrm{~W},<13 \mathrm{VA} \\ & 0 / 50 / 60 \mathrm{~Hz} \end{aligned}$
Relay outputs	switching voltage switching current switching power	5 change-over contacts (co) max. AC 415 V max. 5 A max. 1250 VA (ohmic load) max. 120 W at DC 30 V
	Nominal operational current $I_{e} A C 15$ DC13	$\begin{array}{ll} I_{e}=3 \mathrm{~A} & U_{e}=250 \mathrm{~V} \\ I_{e}=0,1 \mathrm{~A} & U_{e}=250 \mathrm{~V} \\ I_{e}=2 \mathrm{~A} & U_{e}=24 \mathrm{~V} \end{array}$
	recommended fuse NO recommended fuse NC expected life mechanical expected life electrical	4 A time-lag or miniature circuit-breaker MCB B4 3.15 A time-lag 3×10^{7} operations 1×10^{5} operations with $\mathrm{AC} 250 \mathrm{~V} / 5 \mathrm{~A}, \cos \varphi=1$
Testing conditions	ambient temperature range	$\begin{aligned} & \text { EN } 60010-1 \\ & -20 \ldots+65^{\circ} \mathrm{C} \end{aligned}$
	galvanic separation No galvanic separation	Us-Relay, Sensors, USB, Analog output Restet input -> DC 3820 V Relay - Sensors, USB, Analog output Reset input -> DC 3820 V Sensors, USB, Analog output, Reset input
Sensor connection	measuring accuracy sensor current measuring delay time t_{M}	$4 \times$ Pt 100 acc. to EN 60751 / IEC 60751, 2-/3-wire $\pm 0,5 \%$ of value ± 1 Digit $\leq 0,7 \mathrm{~mA}$ $<1,5 \text { s }$
Temperature alarm	switch points hysteresis delay time tALARM delay time tALARM off	$\begin{aligned} & -199 \ldots+800^{\circ} \mathrm{C} \\ & 1 \ldots 99 \mathrm{~K} \\ & 0,1 \ldots 99,9 \mathrm{~s} \\ & 0 \ldots 999 \mathrm{~s} \end{aligned}$
Analog output OUT 1/2	voltage outputs current outputs output resistance current no-load voltage accuracy	```DC \(0 / 2 \mathrm{~V}-10 \mathrm{~V}\), max. DC 10 mA DC 0/4 mA - 20 mA max. \(500 \Omega\) max. DC 16 V \(1 \%\) of span \(\pm 1 \mathrm{~K}\)```
Housing	design dimensions ($\mathrm{h} \times \mathrm{w} \times \mathrm{d}$) line connection solid wire protection housing / terminals attachment weight	V8 $90 \times 140 \times 58[\mathrm{~mm}]$ $1 \times 1,5 \mathrm{~mm}^{2}\left(1,0 \mathrm{~mm}^{2}\right.$ with end sleeves for strands) $\text { IP } 30 \text { / IP } 20$ on 35 mm DIN rail according to DIN EN 60715 or M4 screw app. 360 g

Pt100-Temperature-Relay Type TR440
 4 Sensors Pt100 (RTD), Monitoring of Core, Panel-Mount

Function:

Temperature-Relay for the protection of transformers from over-temperature and for controlling a fan.
Monitoring of the temperatures in the windings is made with 3 sensors. The input for the 4th sensor can be used for monitoring the temperature in the core or for a sensor for ambient temperature.

Features:

- 4 sensor-inputs Pt 100 (RTD) and Pt 1000
- Sensor-connection in 2- or 3-wire
- Monitoring range $-199 \ldots+850^{\circ} \mathrm{C} /-199 \ldots+999^{\circ} \mathrm{F}$
- 4 alarms / relays
- Supply-voltage AC/DC 24240 V
- Clearly arranged displays and easy programming
- Storing of values of MIN- and MAX-temperature
- Code-lock against unintended / unauthorized manipulations of settings

Displays:

- 3 digit 7-segment-display
- 4 LEDs for sensor-inputs, LED for sensor-error
- 4 LEDs for alarms
- 4 LEDs for state of relays
- Display in ${ }^{\circ} \mathrm{C}$ or ${ }^{\circ} \mathrm{F}$

Switching functions:

- 4 relay-outputs, change-over (co) contacts
- Relay for Fan max. 10 A
- Adjustable (depending of function)

Hysteresis 1... 99 K
Switch- and switch-back-

- delay 0... 999 s
- Operating- or closed-current mode
- Autoreset or electronic reclosing lock
- Cyclic start of fan (K1 only)

Option:

- Interface RS485 (Modbus RTU)

The 4 alarms/relay-outputs control the fan and release signals for alarm and trip if limits are exceeded. Different programs allow to adapt the required alarms to the application. Depending on the program e.g. extra alarms for sensor-error or for tripping because of overtemperature in the core are available.

Other applications:
The forth sensor can be used to monitor the room, in which the transformer is set up and the alarm can control a forced cooling of the room.
The TR440 can also be used for the monitoring of temperatures e.g. at motors.

Monitoring Programs:

3 sensors in windings:
Alarms/outputs for:

- Fan (with cyclic test)
- Alarm
- Trip
- Sensor-Error

3 sensors in windings and 1 sensor in core:

Alarms/outputs for:

- Fan (with cyclic test)
- Alarm (winding and core)
- Trip (winding and core)
- Sensor-Error

For core and winding different limits can be programmed.

3 sensors in windings and 1 sensor in core:
Alarms/outputs for:

- Fan (with cyclic test)
- Alarm (winding) / sensor-error (combined)
- Trip (winding)
- Trip (core)

Alarm 2 reports sensor-error and alarm
3 sensors in windings and 1 sensor in core:
Alarms/outputs for:

- Trip (core)
- Alarm (winding)
- Trip (winding)
- Sensor-Error

The relay for error (short-circuit or break of sensorlines) is preset in closed-current mode (alarm also at loss of supply-voltage or failure in the device $=$ monitoring of function of the device). All other relays are in operating-current mode (pick up at an alarm = no alarm when switching on and off supply-voltage). The mode of the relays can be changed by the user.

Order-numbers:

RS485 T224185

Connection plan:

Technical Data

Rated supply voltage Us
Power consumption
Sonsor-connection
Measuring accuracy
Sensor-current Connection

Measuring range
Hysteresis
Switching-delay on/off
Relay-output

Test conditions
Rated ambient temperature range

Housing
Dimensions ($\mathrm{H} \times \mathrm{B} \times \mathrm{T}$)
Terminals
Line connection solid wire
Stranded with insulated ferrules
Attachment
Protection housing
Protection front
Protection terminals Weight

AC/DC 24-240V, AC 20-264 V, DC 20-297 V, < 3 W , < 5 VA
$4 \times$ Pt100 (RTD) acc. to EN 60 751/ IEC 60751
$<1 \%$ of value ± 1 digit
$\leq 1 \mathrm{~mA}$
2- wire or 3-wire, with line-resistance max. $2 \times 50 \Omega$
$-199 \ldots 850{ }^{\circ} \mathrm{C}\left(-199 \ldots+999{ }^{\circ} \mathrm{F}\right)$
1... $99{ }^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right)$
$0 . . .999$ s
Alarm 1 (Fan): 10 A
Alarms 2-4: type 3, see "general technical informations"
see "general technical informations" $-40 . . .+65{ }^{\circ} \mathrm{C}$
panel-mount $96 \times 96 \mathrm{~mm}$
$96 \times 96 \times 85 \mathrm{~mm}$
2×13-pole
$1 \times 0,5 \mathrm{~mm}^{2}$
$1 \times 0,14 \ldots 1,5 \mathrm{~mm}^{2}$
Panel-mount, cutout $92^{+0,8} \times 92^{+0,8} \mathrm{~mm}$
IP 20
IP 54
IP 20
app. 290 g

\section*{Pt100-Temperature-Relay Type TR600

Digital, 6 Sensors, 6 Limits, 2 analog outputs

Digital, 6 Sensors, 6 Limits, 2 analog outputs

Art.-number:
T224360

Temperature Relay for 6 Sen-

 sors Pt100The Pt100-temperature relay TR600 monitors up to six sensors Pt100 (RTD) at the same time. Six switching points and six relays permit almost any combination of switching action. It also can select the highest temperature of groups of sensors. The temperatures of two sensors or groups of sensors can be issued to 2 analog

- measuring and monitoring range $-199 \ldots+800^{\circ} \mathrm{C}$
- 6 sensor inputs with 2- or 3wire connection
- 6 relay outputs K1 to K6 with change-over contacts
- switching points for single sensor or group of 2,3 or 6 sensors
- sensor error relay K7 monitors sensor break or
- sensor short circuit as well as an interruption of the powersupply.
- 2 analog outputs, 0/4... 20 mA and $0 / 2 \ldots 10 \mathrm{~V}$, with individual scaling.
- universal power supply in 2 ranges AC/DC 24-240 V
- USB-Stick-Terminal for upand download of sets of parameters and for firmwareupdates
Us

Rated supply voltage Us

Relay outputs | power consumption |
| :--- |
| frequency |

AC 15
DC 13
recommended fuse NO recommended fuse NC expected life mechanica expected life electrical
ambient temperature range
galvanic separation

No galvanic separation

Sensor connection	measuring accuracy sensor current measuring delay time t_{M}
Temperature alarm	switch points hysteresis delay time tALARM delay time tALARM off
Analog output OUT 1/2	voltage outputs current outputs output resistance current nolooad voltage accuracy
Housing	design dimensions $(\mathrm{h} \times \mathrm{w} \times \mathrm{d})$ line connection solid wire protection housing / terminals attachment weight

AC/DC $24-240 \mathrm{~V}$
DC 20,4... 297 V
AC $20 . . .264 \mathrm{~V}$
< 4 W, < 13 VA
$0 / 50 / 60 \mathrm{~Hz}$
7 change-over contacts (co)
max. AC 415 V
max. 5 A
max. 1250 VA (ohmic load)
max. 120 W at DC 30 V
$I_{e}=3 \mathrm{~A} \quad U_{e}=250 \mathrm{~V}$
$I_{e}=2 \mathrm{~A} \quad U_{e}=24 \mathrm{~V}$
$I_{e}^{e}=0,1 \mathrm{~A} \quad U_{e}^{e}=250 \mathrm{~V}$
4 A time-lag or miniature circuit-breaker MCB B4
3.15 A time-lag
3×10^{7} operations
1×10^{5} operations with $\mathrm{AC} 250 \mathrm{~V} / 5 \mathrm{~A}, \cos \varphi=1$

EN 60 010-1
$-20 \ldots+65^{\circ} \mathrm{C}$

Us-Relay, Sensors, USB, Analog output
Reset input -> DC 3820 V
Relay - Sensors, USB, Analog output
Reset input -> DC 3820 V
Sensors, USB, Analog output, Reset input

6 x Pt 100 acc. to EN 60751 / IEC 60751, 2- / 3-wire
$\pm 0,5 \%$ of value ± 1 Digit
$\leq 0,7 \mathrm{~mA}$
$<1,5$ s
$-199 \ldots+800^{\circ} \mathrm{C}$
1 ... 99 K
0,1 ... 99,9 s
0 ... 999 s

DC 0/2 V - 10 V , max. DC 10 mA
DC 0/4 mA - 20 mA
max. 500Ω
max. DC 16 V
1% of span $\pm 1 \mathrm{~K}$

V8
$90 \times 140 \times 58$ [mm]
$1 \times 1,5 \mathrm{~mm}^{2}\left(1,0 \mathrm{~mm}^{2}\right.$ with end sleeves for strands)
IP 30 / IP 20
on 35 mm DIN rail according to EN 60715 or M4 screw app. 360 g

Pt100-Temperature-Relay Type TR600

Digital, 6 Sensors, 6 Limits, RS485

TR600 RS485

Art.-number:
T224361

Temperature Relay for 6 Sensors Pt100
The Pt100-temperature relay TR600 monitors up to six sensors Pt100 (RTD) at the same time. 6 switching points and 6 relays permit almost any combination of switching action. It also can select the highest temperature of groups of sensors.
Programming is very variable and simple.

- measuring and monitoring range $-199 \ldots+800^{\circ} \mathrm{C}$
- 6 sensor inputs with 2- or 3wire connection
- 6 relay outputs K1 to K6 with change-over contacts
- switching points for single sensor or group of 2,3 or 6 sensors
- sensor error relay K7 monitors sensor break or sensor short circuit as well as an interruption of the powersupply.
- interface RS485 protocols ZIEHL and modbus RTU
- universal power supply in 2 ranges AC/DC 24-240 V
- USB-Stick-Terminal for upand download of sets of parameters and for firmwareupdates

Due to the fact that 6 type Pt100 sensors can be connected, the unit is especially suitable for temperature monitoring wherever up to 6 different measuring points must be monitored simultaneausly:

- machines, bearings, plants
- motors and generators with simultaneous monitoring of bearings and coolant.
- transformers with additional monitoring of the core temperature also

Function

Rated supply voltage Us	tolerance DC-supply tolerance AC-supply	AC/DC $24-240 \mathrm{~V}$ DC 20,4... 297 V AC $20 \ldots 264 \mathrm{~V}$
	power consumption frequency	$\begin{aligned} & <4 \mathrm{~W},<13 \mathrm{VA} \\ & 0 / 50 / 60 \mathrm{~Hz} \end{aligned}$
Relay outputs	switching voltage switching current switching power	7 change-over contacts (co) max. AC 415 V max. 5 A max. 1250 VA (ohmic load) max. 120 W at DC 30 V
	Nominal operational current $I_{\text {e }}$ AC 15 DC 13	$\begin{array}{ll} I_{e}=3 \mathrm{~A} & U_{e}=250 \mathrm{~V} \\ I_{e}=2 \mathrm{~A} & U_{e}=24 \mathrm{~V} \\ I_{e}=0,1 \mathrm{~A} & U_{e}=250 \mathrm{~V} \end{array}$
	recommended fuse NO recommended fuse NC expected life mechanical expected life electrical	4 A time-lag or miniature circuit-breaker MCB B4 3.15 A time-lag 3×10^{7} operations 1×10^{5} operations with $\mathrm{AC} 250 \mathrm{~V} / 5 \mathrm{~A}, \cos \varphi=1$
Testing conditions	ambient temperature range	$\begin{aligned} & \text { EN } 60 \text { 010-1 } \\ & -20 \ldots+65{ }^{\circ} \mathrm{C} \end{aligned}$
	galvanic separation No galvanic separation	Us-Relay, Sensors, USB, Analog output Reset input -> DC 3820 V Relay - Sensors, USB, Analog output Reset input -> DC 3820 V
Sensor connection	measuring accuracy sensor current measuring delay time t_{M}	$\begin{aligned} & 6 \times \text { Pt } 100 \text { acc. to } \mathrm{EN} 60751 \text { / IEC } 60751, \text { 2- / 3-wire } \\ & \pm 0,5 \% \text { of value } \pm 1 \text { Digit } \\ & \leq 0,7 \mathrm{~mA} \\ & <1,5 \mathrm{~s} \end{aligned}$
Temperature alarm	switch points hysteresis delay time tALARM delay time tALARM off	$\begin{aligned} & -199 \ldots+800{ }^{\circ} \mathrm{C} \\ & 1 \ldots 99 \mathrm{~K} \\ & 0,1 \ldots 9,9 \mathrm{~s} \\ & 0 \ldots 999 \mathrm{~s} \end{aligned}$
Interface RS485	address/busnumber baudrate parity bit stoppbit Response time ZIEHL RS485 protocol	Modbus RTU/ZIEHL RS485 protocol 1-247 (Modbus)/0-99 (ZIEHL RS485 protocol) 4800/9600/19200/57600 no, odd, even 1 (at modbus and pority no, stoppit $=2$) 7-9 ms after reception of last sign
Housing	design dimensions ($\mathrm{h} \times \mathrm{w} \times \mathrm{d}$) line connection solid wire protection housing / terminals attachment weight	V8 $90 \times 140 \times 58[\mathrm{~mm}]$ $1 \times 1,5 \mathrm{~mm}^{2}\left(1,0 \mathrm{~mm}^{2}\right.$ with end sleeves for strands) $\operatorname{IP} 30 / I P 20$ on 35 mm DIN rail according to EN 60715 or M4 screw app. 360 g

Universal-Relay Type TR800Web

8 Inputs, Operation with Browser via TCP/IP

Art.-Nr. T224164

Web-IO Universal Relay with 8 Inputs for TemperatureSensors and other analog Signals.

The TR800Web can be connected to the internet or an intranet and operated via TCP/IP from a normal PC with a suitable browser (tested with MS IE 7). No special software and no special instruction is necessary.

The Universal-Relay TR800Web monitors and logs signals from up to 8 inputs. Up to 8 limits (one per input) can be programmed for each of the 4 output-relays. Thus e.g. alarm 1 can be activated when the temperature at a sensor (e.g. Pt100) at input 1 exceeds
a limit or when the signal of a transmitter for pressure (e.g. 4-20 mA) at input 5 falls below a limit.

It can also send an email when a limit is exceeded and/or when the signals falls short of the limit again. A day/night switchover allows to vary limits depending on daytime.
In addition the device has an interface RS485 with the protocols Modbus and ZIEHL-standard.

Applications:
The TR800Web is used where one or more of the following features a required:

- measuring of up to 8 analog signals and transmit the data via TCP/IP
- reading of measured values and teleservice via internet/intranet
- signalling of alarms via email when limits are exceeded
- monitoring of filling levels (water, oil) with ZIEHL filling level probe NS6123-6
- logging of measured values and remote inquiry e.g. for monitoring temperatures at engines and in plants

Features

8 Measuring Inputs (each programmable):

- Pt100 (RTD), Pt1000 in 2- or 3-wire
- KTY83 or KTY84
- thermocouples types B, E, J, K, L, N, R, S, T
- DC 0-10 V, DC 0/4-20 mA, display can be scaled
- resistance 0-500 Ohm, 0-30 kOhm
- Difference of 2 signals

4 Alarms

- 4 relays, potential-free change-over contacts
- Remote switching of relays via Ethernet
- for every alarm separately programmable
- one limitperinput(limitand switching-back-value)
- second set of values switchable day/night
- switching-delay and switching-back delay
- remote operation of relays (on/off) with browser
- interlocked switching
- email at alarm

Programmable via internet in webbrowser

- display of measured values, min- and max-values with date/ time-stamp
- simulation of measured values state of alarms
- configuration of inputs (name, compensation, scaling and measuring-unit)
- configuration of alarms (limits, function of relays, ...)
- time-depending day/night changing of limits
- logging of up to 150.000 values per input, alarms with date/time-stamp
- logging-interval adjustable 2 seconds to 24 hours
- configuration of network
- settings of system
- administration of users and code-protection
- real-time clock with synchronizing with time-server, reserve 7 days

Interfaces:
Ethernet interface (http, https, UDP and Modbus)

- http (port can be selected and switched off) and https
- ftp-upload for automatic (interval adjustable)
- storage of logged data on ftpserver
- UDP- and Modbus protocol to read data (port can be selected)
- AJAX for data-readout in html
- SNMP

RS485 interface to readout data with modbus (RTU) and ZIEHL-protocol

Operating and Programming with Web-Browser:

[^1]Rated supply voltage Us

Relay output

Testing conditions

Network-connection

Inputs

AC/DC 24-240 V, 0/50/60 Hz < $4 \mathrm{~W}<13 \mathrm{VA}$
DC 20,4... 297 V, AC 20... 264 V
4×1 change-over contact (CO)Typ 2 type 2 (see "general technical informations")
see "general technical informations"

10/100 MBit Auto-MDIX

Measuring cycle/measuring time
 <3 s

Pt100, Pt1000 according to EN 60751

	Measuring range ${ }^{\circ} \mathrm{C}$		Short-circuit Ohm	Interruption Ohm	Resistance sensor + resistance line Ohm
Sensor	min	max	<	>	max
Pt100	-199	860	15	400	500
Pt1000	-199	860	150	4000	4100
KTY83	-55	175	150	4000	4100
KTY84	-40	150	150	4000	4100

Accuracy
Sensor-curren
Thermal drift
$< \pm 0,5 \%$ of measured value $\pm 0,5 \mathrm{~K}(\mathrm{KTY} \pm 5 \mathrm{~K})$
$\leq \pm 0,6 \mathrm{~mA}$
$<0,04{ }^{\circ} \mathrm{C} / \mathrm{K}$

Thermocouples according to EN 60 584, DIN 43710

Inputs for voltage and current

	Resistance of input	max. Inputsignal	Accuracy from Full Scale
$0-10 \mathrm{~V}$	$12 \mathrm{k} \Omega$	27 V	$<0,1 \%$
$0 / 4 \ldots 20 \mathrm{~mA}$	18Ω	100 mA	$<0,5 \%$
Thermal drift	$<0,02 \% / \mathrm{K}$		

Measuring of resistance:

Accuracy $0,0 \ldots 500,0 \Omega \quad<0,2 \%$ of measured value $\pm 0,5 \Omega$
Accuracy $0 . . .30,00 \mathrm{k} \Omega \quad<0,5 \%$ measured value $\pm 2 \Omega$
Measuring current
$\leq 0,6 \mathrm{~mA}$
dimensions ($\mathrm{w} \times \mathrm{h} \times \mathrm{d}$) protection housing/terminals attachment
weight
design V8, switchgear-mount
$140 \times 90 \times 58 \mathrm{~mm}$, mounting height 55 mm IP 30/ IP 20
DIN-rail 35 mm according to EN 60715 oder screws M4 (with 2 extra bars)
app. 370 g

Pt100-Temperature-Relay TR1200

12 Sensors, Interface RS485

TR1200

${ }_{c} \mathrm{M}_{\text {us }}$

12-channel Temperature-Relay for Sensors Pt100 (RTD)
Temperature-relays TR1200 measure the temperature of up to 12 sensors within 199...+850 ${ }^{\circ} \mathrm{C}$ and provide the data at an interface RS485 for external evaluation. With its universal power-supply AC/DC 24-240 V it can be connected to all common supply-voltages.
The TR1200 provides the data as Modbus-RTU-protocol or according to the ZIEHL-standard.

With protocol ZIEHL-standard it can replace two ZIEHL TR600.

The TR1200 is used where temperatures of many sensors Pt100 shall be evaluated by a device with input RS485.

Applications are e.g. monitoring of

- motors and generators (windings, bearings, coolant, ambient temperature)
- transformers (windings, core, ambient temperature)
- machines, plants and equipment

Features

Sensors and Displays:

- 12 inputs for sensors Pt100 (RTD)
- Connection 2- or 3-wire unneeded inputs can be switched off
- Monitoring of sensors for short-circuit and interrupt
- 3-digit-display for temperature
- LEDs for assigning the measured value, error, state of relay and interface

Interface:

- Interface RS485 (protocols ZIEHL-standard and ModbusRTU)
- Baudrate (4800/9600/19200) and Parity-Bit selectablePro-
- tocols see operating-manual on www.ziehl.de
- Relay for Error (1 co-contact) for sensor-error and operational failure

More Features:

- easy operation and selection of temperatures at the device
- Sensor-simulation
- Code-protection against manipulation of settings
- Universal supply-voltage AC/DC 24... 240 V
- Housing for switchgear-mount, 140 mm wide, mounting-height 55 mm
- Mounting on DIN-rail 35 mm or with screws M4 (option)

Software for operation (download from www.ziehl.de)

- Software (Modbus) for programming the inputs
- Logging-function (with connected PC only)

Order-number
T224095

Technical Data TR1200

AC/DC 24-240 V, 0/45... $65 \mathrm{~Hz},<5 \mathrm{VA}$ DC: 20,4... $297 \mathrm{~V}, \mathrm{AC}: 20,4 \ldots 264 \mathrm{~V}$

Relay output

Measuring inputs
Measuring time sensor Measuring range Resolution Tolerance Sensor-current

RS485 interface
Adress of device
Baud rate Parity cable-length

Testing conditions Rated ambient temperature range

Housing
Dimensions (W x H x D)
Protection housing/terminals Attachment

Weight

1 change-over contact (CO) type 2, see "general technical informations"
$12 \times$ Pt100 (RTD) acc. to EN 60751 / IEC 60751
$0,25 \ldots 3 s$ (depending on number of sensors)
$-199^{\circ} . .850^{\circ} \mathrm{C}$
$1^{\circ} \mathrm{C}$
$\pm 0,5 \%$ of value $\pm 1 \mathrm{~K}$
$\leq 0,8 \mathrm{~mA}$
0... 96

4800, 9600, 19200 baud
N, O, E (non, odd, even)
max. 1000 m at 19200 baud
see "general technical informations"
$-20^{\circ} \mathrm{C} \ldots+65^{\circ} \mathrm{C}$

Design V8
$140 \times 90 \times 58 \mathrm{~mm}$, mounting height 55 mm IP 30 / IP 20
DIN-rail 35 mm acc. to EN 60715 or screws M4 (option)
app. 350 g

Pt100-Temperature-Relay TR1200IP
 12 Sensors, Interface TCP/IP, IEC 61850 (GOOSE)

TR1200IP

Features

12-channel Temperature-Relay for Sensors Pt 100 (RTD)
Temperature-relays TR1200IP measure the temperature of up to 12 sensors within 199...+850 ${ }^{\circ} \mathrm{C}$ and provide the data at an ethernet interface for external evaluation. With its universal power-supply AC/DC 24-240 V it can be connected to all common supply-voltages.
Actual measured values and stored min- and max-values can be displayed in a normal browser.

Sensors and Displays:

- 12 inputs for sensors Pt100 (RTD)
- Connection 2- or 3-wire unneeded inputs can be switched off
- Monitoring of sensors for short-circuit and interrupt
- 3-digit-display for temperature
- LEDs for assigning the measured value, error, state of relay and interface

Interface:

- Interface TCP/IP
- $10 \mathrm{MBit} / \mathrm{s}$ Ethernet
- supports IEC 61850 GOOSE

At the ethernet interface the following protocols are available:

- Modbus TCP
- ZIEHL RTD
- IEC 61850 (GOOSE)

The TR1200IP is used where temperatures of many sensors Pt100 shall be measured and transmitted via Ethernet.

Applications are e.g. monitoring of

- motors and generators (windings, bearings, coolant, ambient temperature)
- transformers (windings, core, ambient temperature)
- machines, plants and equipment
- Protocol details see www.ziehl.de - operating manuals

More Features:

- easy operation and selection of temperatures at the device
- Sensor-simulation
- Code-protection against manipulation of settings
- Relay for Error (1 co-contact) for sensor-error and operational failure
- Universal supply-voltage AC/DC $24 \ldots 240 \mathrm{~V}$
- Housing for switchgear-mount, 140 mm wide, mounting-height 55 mm
- Mounting on DIN-rail 35 mm or with screws M4 (option)

Software

- The TR1200IP can be operated with a normal webbrowser. There is no special software required.

Order-number
T224078

GOOSE settings and configuration:

TR1200IP

Status Simulation Sensor Config IP Config TCP/UDP Config Go0se Firmware Update Help

Achtung: VLAN ID / Prioritāt wird nicht unterstützt! Warning: VLAN ID / Priority is not supported!

IEC 61850:	a On	Off
Goose MAC:	01.00.CD:01: 10 : 00	
IEC 61850 Name:	TR1200IP	
Go ID:	ZIEHL_TR12001P	
App ID:	0x 0001	
Monitoring time min:	10 ms	
Monitoring time max:	5000 ms	
Deadband:	$2 \quad .0{ }^{\circ} \mathrm{C}$	
Config revision:	7	

Copyriaht 82009 zieht insustrie-elektranik $\mathrm{GmbH}+\mathrm{CO} \mathrm{KG}$

Rated Supply Voltage Us

Relay output	1 change-over contact (CO) type 2, see "general technical informations"
Measuring inputs	$12 \times$ Pt 100 (RTD) acc. to EN 60751 / IEC 60751
Measuring time sensor	$0,25 \ldots 3$ (depending on number of sensors)
Measuring range	$-199^{\circ} . .850^{\circ} \mathrm{C}$
Resolution	$1^{\circ} \mathrm{C}$
Tolerance	$\pm 0,5 \%$ of value $\pm 1 \mathrm{~K}$
Sensor-current	$\leq 0,8 \mathrm{~mA}$
Ethernet interface	
IP-adress	selectable
Subnet mask	selectable
UDP Port	selectable 0... 65535
Max. cable-length	max. 20 m with CAT 5 patch-cable
Max. response time	200 ms
Testing conditions	see "general technical informations"
Rated ambient temperature range	$-20^{\circ} \mathrm{C} . . .+65^{\circ} \mathrm{C}$
Housing	Design V8
Dimensions (W x H x D	$140 \times 90 \times 58 \mathrm{~mm}$, mounting height 55 mm
Protection housing/terminals	IP 30 / IP 20
Attachment	DIN-rail 35 mm acc. to EN 60715 or screws M4 (option)
Weight	app. 350 g

Wireless-Temperature-Relay Type WR250 Potential-free monitoring of temperatures at high-voltage transformers

WR250

Function

The Wireless-Relay WR250 is a receiver for up to 6 Wireless Temperature-Sensors WSPt100 Up to 6 sensors transmit temperatures by radio. The WR250 displays and evaluates the temperatures.

- Evaluation of 1-6 WS Pt 100-sensors
- Measuring- and monitoring range $0 . . .180^{\circ} \mathrm{C}$
- Limits and functions of relay pre-set for monitoring transformers (Fan, Alarm, Trip)
- Sensor-Simulation for testing the settings
- Code-lock against manipulation of settings
- Universal power-supply AC/ DC 24-240 V
- Interface RS485 (Modbus) for reading temperature and states of alarms and programming
- Input for external antenna
- Terminals pluggable

Displays

- 3 digit 7-segment-display for temperatures, alarms and parameters
- Resolution $1^{\circ} \mathrm{C}$
- Display/Storing of min- and max-temperatures
- 4 LEDs for state of relays
- 6 LEDs for states of wirelesssensors

Rated Supply Voltage Us

Sensor-Input
Measuring range
Tolerance

Relay-output

Test conditions
Rated ambient temperature range
Dimensions (h x w x d)
Protection housing / terminals Weight
Attachment

Application:

- Protection of high-voltage transformers (in primary windings also) from over-temperatures
- where temperatures are to be measured on high potential
- where wireless data-transfer via radio is preferred

Switching functions

- 3 relays alarm (each 1 change-over contact)
- warmest sensor switches relay
- individually adjustable for relays K1-K3
- Hysteresis
- Delay-times for switching and switching back
- operating- or closed surrent mode
- cyclic check of function (e.g. K1 for fan)
- Relay K4 for sensor error alarm

Order-number:

WR250
T224350
Antenna with magnet foot (Option) 101100

AC/DC 24-240V, AC 20-264 V, DC 20,4-297 V, <5VA

Receiver for 1-6 wirelesssensors WS Pt 100
$0 . . .180^{\circ} \mathrm{C}$
$\pm 4 \mathrm{~K}$ (Wirelesssensor Pt 100)
Typ 2 see "general technical informations" 4×1 changeover-contact (CO)
see "general technical informations"
$-20 . . .+65^{\circ} \mathrm{C}$
Design V4: 90x 70×58 [mm], mounting height 55 mm IP 30 / IP 20
approx. 190 g
DIN-rail 35 mm or screws M4

Wireless-Temperature-Sensor WSPt100 potential-free monitoring of temperatures at high-voltage transformers

WSPt100

The Wireless TemperatureSensor WSPt100 measures the temperature of a connected Pt100 (RTD) sensor.
The measured values are transmitted by radio to a WirelessRelay WR250. The WR250 displays and evaluates the temperatures.
The WSPt100 has a built-in battery or generates the required energy by means of an integrated photocell and stores it in a capacitor. Thus the WSPt100 can also measure and transmit temperatures during a temporary darkness.

Description

- Input for temperature-sensor Pt100 (RTD)
- Measuring range 0 .. $180^{\circ} \mathrm{C}$ (other ranges on request)
- Lifetime of battery at $10 \mathrm{~s} / 10$ cycles and ambient temperature $<30^{\circ} \mathrm{C}$ up to 10 years
- Duration at darkness max. app. 10 hours (solar)
- Measuring-cycle adjustable (1s / 10s / 100s)
- Sending-cycle adjustable (every 1 / 10 / 100 measurements)
- Automatic sending on tem-perature-change $>4 \mathrm{~K}$

The maximum duration at darkness depends on the selected intervals for measuring- and sending and on the state of charge of the capacitor.
Power-supply and transmission of data are completely potential-free. Thus high differences in potentials are possible.
The electronics must be mounted potential-free or on the same potential as the connected sensor. Max. ambient temperature $65^{\circ} \mathrm{C}$.

Application:

- Protection of high-voltage transformers (in primary windings also) from over-temperatures
- where temperatures are to be measured on high potential
- where wireless data-transfer via radio is preferred
- Input for sensor Pt100 (not included) via connector M12 (included)
- Lighting on photocell min. 500 LUX (continously)
- Range of radio signal: free field app. 100 m , in buildings app. 20 m

Order-numbers: solar T224351
with battery T224352
not required (supply via photocell)
868,3 MHz
max. 10 mW
app. 1s / 10s / 100s (BR1 and BR2)
every 1 / 10 / 100 measurements (BR3 and BR4)
depending on configuration and ambient temperature up to 10 years
$0^{\circ} \mathrm{C} . . .180^{\circ} \mathrm{C}$
$\pm 4 \mathrm{~K}$
weather-protected places
$+5^{\circ} \mathrm{C} \ldots+65^{\circ} \mathrm{C}$
5%... 85% relative humidity
no condensation or icing permitted
Protection
Interference resistance
Dimensions ($\mathrm{h} \times \mathrm{wxd}$)
Protection housing / terminals
Attachment
Weight

IP 66
EN 61000-6-2
$65 \times 50 \times 35 \mathrm{~mm}$
IP 66 / IP 67
Screws M 4 (mounting plate included)
app. 80 g

Safety Temperature-Limiting-Device STR100 for Pt100

STR100

The electrical safety temperature limiting device type STR100, in connection with Pt100 sensors, monitors temperatures in applications for which monitoring with increased safety is required. Functioning corresponds to type 2BDK as per VDE 0631.
The limittemperature Tcan be set at the front by means of a scaled potentiometer. An unauthorized or unintended manipulation of the limit is prevented by a transparent plastic-plate which can be sealed.A potential free relay contact is switched off when exceeding the limit value.

Safety temperature limiting devices are used in plants when temperature monitoring has to meet high requirements:

- Industrial furnace plants
- Dyeing machines
- Thermal oil plants

The device ca be used in combination with sensors Pt100 (RTD). The suitability must be proved in combination with the used sensors. Regular checks are stipulated for enhanced safety requirements.
The safe STR100 can be used in applications, in which an increased safety level up to SIL 2, PL c is required. It meets the requirements of safety category 3 (Safety of machines according to DIN EN 954-1, for models with supply-voltage DC 24 V and $A C 230 \mathrm{~V}$ tested and approved by TÜV Rheinland with reports T24/00, 19.6.2000, T103/2007, 25.1.2007 and Z103/2007 E2, 12.9.07. Reports see homepage www.ziehl.de).

- Relay for message readiness for switching on
- Setting of limit value to be sealed
- Incorporated reset key
- Connection for external reset key
- Assembly-friendly plug-in base housing S 12

Art.-numbers:

$0 \ldots . .200^{\circ} \mathrm{C}$	AC 230 V	T224148
$100 \ldots 300^{\circ} \mathrm{C}$	AC 230 V	T 224142
$200 \ldots . .500^{\circ} \mathrm{C}$	AC 230 V	T 224144
$0 \ldots .200^{\circ} \mathrm{C}$	DC 24 V	T 224058
$100 \ldots 300^{\circ} \mathrm{C}$	DC 24 V	T 224059
$200 \ldots 500^{\circ} \mathrm{C}$	DC 24 V	T 224062
Othermeasuring ranges $-200 \ldots . .700^{\circ} \mathrm{C}$ upon request.		

Power supply	Rated supply-voltage Us Adm. tolerance Us Power consumption Frequency	AC 230 V DC 24 V $-10 \ldots+10 \%$ $-15 \ldots+25 \%$ $<2 \mathrm{VA}$ $<3 \mathrm{~W}$ $50 / 60 \mathrm{~Hz}$
Sensor-Input	Max. current Max. voltage Line resistance	```2-wire Pt 100 acc. to EN 60751/IEC 751, \(\alpha=0,00385\) \(<3,15 \mathrm{~mA}\) (\(<10 \mathrm{~mA}\) bei \(-200 \ldots+0^{\circ} \mathrm{C}\)) \(<2 \mathrm{~V}\), open terminals \(<15 \mathrm{~V}\) Standard \(=0,5 \Omega\), Option: max. \(30 \Omega\)```
Switching points	Switching off Limit value T Switching hysteresis Reset	Over-temperature, sensor break, sensor short circuit and malfunction adjustable $10^{\circ} \mathrm{C}(\pm 25 \%)$ with reset key at the front or an external key
Relay outputs	Switching voltage Switching current Switching power nominal continous current lth nominal operating current le recommended fuse for contacts expected life mechanical expected life electrical derating factor $\cos \varphi 0,3$	
Testing conditions	Rated insulation voltage Contamination level Rated impulse withstand voltage Overvolatage category Transformer Interference resistance industry Interference transmission "on"-period Rated ambient temperature range	EN 50178, EN 61010-1, EN 60947-5 AC 250 V 2 (normal) 4000 V III EN 61558-2-6 (VDE 0551) EN 61000-6-2, EN 61326-1 Class B EN 50081-1 100 \% $0 . . .50^{\circ} \mathrm{C}$ EN 60068-2-1 dry heat
Housing	Dimensions H x B x T wire-connection Protection housing Protection terminals Fitting position Fastening Vibration resistance Shock resistance Weight	Design S 12 (plugable): $82 \times 42 \times 121$ [mm] 12-pole, each $2 \times 1,5 \mathrm{~mm}^{2}$ IP 40 IP 20 any Snap mounting on 35 mm standard rail conforms to DIN EN 50022 or M4 screws 1 mm deflection $25 \mathrm{~Hz} / 10 \mathrm{~g} 25-100 \mathrm{~Hz}$ 10 g 20 ms 20 g 4 ms approx. 300 g

Pt100-Temperature-Sensors Type TF101

General

Types / Description

TF101N
$-70^{\circ} \mathrm{C} \ldots+500^{\circ} \mathrm{C}$

TF101K
$-50^{\circ} \mathrm{C} \ldots+170^{\circ} \mathrm{C}$

TF101 temperature sensors use EN 60751/IEC 60751 platinum resistance temperature detectors (RTD). For precise temperature measurement the Platinum Re-
sistance Thermometer offers the best overall advantages in repeatability and stability over a long period. High accuracy allows replacement of a sensor without any need for re-adjust of the connected measuring devices or thermostats.

Platinum resistance temperature sensor on ceramic substrate intended for installation into any housing depending to user's requirements. Very small and quick sensor, only suitable for further treatment. Notice: do not cut the sensor leads. Thermal response time refer to manufacturer data: $\mathrm{T}_{0,9}$ in the air 10 s , in water <1 s.

Platinum resistance temperature sensor on ceramic substrate protected by aheat-shrinkable sleeve and with PTFE isolated stranded wire. The TF101K version can be installed in motor or transformer windings. When build-in into windings do not pressure the sensor element. Precautions should be taken to protect sensor and extension leads against push and pull forces. Thermal response time $\mathrm{T}_{0,9}$ in the air 100 s , in water 19 s .

SensorsTF101U2 are encapsulated in a stainless-steel-shell V4A. They are suitable for measuring temperatures in fluids, at surfaces or for inside or outside applications. The protection class is IP 66. The version with PVC-insulated cable ($3 \times 0,25 \mathrm{~mm}^{2}$ in one cable) can be easily wired. The maximum ambient temperature is $105^{\circ} \mathrm{C}$.
The sensor with cable 30 mm (PVC) can be mounted in terminals in switchgear cabinets to measure temperature in enclosure.
The version with PTFE-insulation ($3 \times 0,14 \mathrm{~mm}^{2}$ single wires) withstands peak-temperatures up to $200^{\circ} \mathrm{C}$

Order number:
019061

With 2-wire connection and cable-length of 2 m there is a temperature-failure of approx. $0.51 \Omega=1.32 \mathrm{~K}$ caused by the line resistance.
Cable length: 2000 mm
Weight: 10 g
Order number: 2-wire T223154
3-wire T223134

Weights: PVC: $2 \mathrm{~m}=50 \mathrm{~g}, 10 \mathrm{~m}=250 \mathrm{~g}$, $30 \mathrm{~mm}=15 \mathrm{~g}$
PTFE: $2 \mathrm{~m}=20 \mathrm{~g}$
Order numbers:
3-wire 2m PVC $-30 \ldots+105^{\circ} \mathrm{C}$ T223051 3-wire 10 m PVC $\quad-30 \ldots+105^{\circ} \mathrm{C} \quad$ T223058 3-wire 2m PTFE
$-50 \ldots+170^{\circ} \mathrm{C}$
T223052
2-wire 30 mm PVC
$-30 \ldots+80^{\circ} \mathrm{C}$
T223047

TF101G3
$-50^{\circ} \mathrm{C} \ldots+170^{\circ} \mathrm{C}$
Screw-in housing

Platinum resistance temperature sensor on ceramic substrate built into a M6 brass threaded bush, especially suitable for being screwed into metal, e.g. for monitoring temperature of heat sinks or heating plates.
Please note that there will be a measuring error due to the design, as the sensor can loose heat via the connection strand.
Cable length: 2000 mm
Weight: 21 g.
(Dimensions see Dimension illustrations)
Order number: 3-wire
T223143

TF101ZG2
$-50^{\circ} \mathrm{C} \ldots+170^{\circ} \mathrm{C}$

Platinum resistance temperature sensor built into steel tube V4A, 1/2 inch, suitable for installation in pipes. Thermal response time $\mathrm{T}_{0,9}$ in the air 255 s , in water 45 s.
Suitable for transmission in 2- or 3-wire technique.
Weight 120 g
(Dimensions see Dimension illustrations)
Order numbers:
110 mm insertion depth T223137

Sensor for measuring ambient temperatures inside or outside.
Protection class IP 54. Cabling can be connected in 2- or 3- wire technique.
Housing $\mathrm{W} \times \mathrm{H} \times \mathrm{D}=65 \times 50 \times 38 \mathrm{~mm}$
Weight: app. 70 g
Order number:
T223060

Nominal resistance
Temperature coefficient
Class B, DIN 43760
Test voltage
Extension leads
Shrink sleeve
max. temperature at sensors with max. $170^{\circ} \mathrm{C}$
100Ω at $0^{\circ} \mathrm{C}$
$3,85 \times 10^{-3} / \mathrm{K}$ (see table)
$\Delta \vartheta= \pm(0,3+0,005 \vartheta)\left[{ }^{\circ} \mathrm{C}\right]$
2,5 kV AC (not 019061 and T223047)
PTFE; silver-plated stranded copper wire $0,14 \mathrm{~mm}^{2}$ or PVC isolated copper wire Kynar
$200^{\circ} \mathrm{C}$ (max. 170 h)

Cabling

Line-resistance

Linecompensation

ZIEHL thermostats of TR series are generally insensitive to interference in the sensor line. Occasionally, however, undesirable switching is unavoidable, especially when temperature is near the switching point. For this reason it is highly recommended that cables are not laid parallel to power current lines over long distances. When appropriate, cables should be screened or twisted together.

With RTD sensors the resistance of the connecting cable should be considered, otherwise there is an measuring error. The resistance must be compensated. The resistance of a connecting cable can be calculated as follows:

$$
\begin{array}{ll}
\mathrm{R}[\Omega]=2 \times \mathrm{I} /(\mathrm{k} \times \mathrm{A}), & \mathrm{I}=\text { cable length }[\mathrm{m}], \\
\mathrm{k}=\text { conductivity }\left[\mathrm{S} \times \mathrm{m} / \mathrm{mm}^{2}\right] \text { e.g. } \mathrm{Cu}=56, \\
\mathrm{~A}=\text { cross sectional area }\left[\mathrm{mm}^{2}\right]
\end{array}
$$

For example copper-wire: $I=50 \mathrm{~m}$, cross sectional area $1 \mathrm{~mm}^{2}$: $\mathrm{R}=2 \times 50 /(56 \times 1)=1,79$ Ω, Resulting error $=1,79 \Omega / 0,385 \Omega \times \mathrm{K}=4,6 \mathrm{~K}$.

2-wire technique

With 2-wire connection the line resistance is compensated for by a potentiometer in the thermostat, by programming (e.g. TR122D, TR600) or via wiring an external resistor. The advantage of the possibly simpler and more economical running of just two wires is counteracted by the disadvantage of the manual compensation required in the case of longer wiring. Differences in resistance caused by temperature changes cannot be compensated.

3-wire technique

With 3-wire connection, a third wire (sense) connected to the sensor registers the drop in voltage in one line. For compensation of line resistance it is assumed that the voltage drop in the second line is identical (i.e. the same wire and same wire temperature). Compensation is then performed automatically. Possible changes of resistance in the line due to temperature changes are also compensated for.

4-wire technique

With 4-wire connection, impressed current flows via two wires to the sensor. Via a two sensor line the drop in voltage is measured directly at the sensor. Possible differences in the sensor connection wiring can be disregarded. A disadvantage is the higher costs involved in running 4 wires.

Kombination of 2-and 3-wire technique

When connecting 2 -wire-sensors to units with 3 -wire input, the line resistance can be compensated by connecting a compensation resistor (Rk) between ground and senseinput. Rk must have the same value as the resistance of the line. The sensor then has to be connected to the + and the sense- input. Rk must be lower than the permitted resistance for 1 line of the 3 -wire-input.

Units requiring 3-wire configurations can also be operated by 2 -wire sensors. The sensor input is simply shortened. The line resistance need not be compensated.

3 -wire sensors can be used as 2 -wire sensors, simply by omitting one wire.
2-wire sensors can be branched at any desired position in a 3 or 4-wire connection system. In this case though, the line resistance of the two wires from the branching point to the sensor is not compensated.

ZIEHL thermostats, series TR are designed for use with 2 or 3-wire connection.

| ${ }^{\circ} \mathrm{C}$ | Ω | | ${ }^{\circ} \mathrm{C}$ | Ω | ${ }^{\circ} \mathrm{C}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

The Pt 1000 sensor is the "big brother" of the Pt 100 sensor. Its nominal resistance at $0^{\circ} \mathrm{C}$ is 1000Ω. Resistance values of the whole series are higher by a factor of 10 . The sensor is used in the same way as the Pt100 sensor. Its dimensions are slightly larger (4×5 uninsulated). Thermostats and sensors for Pt1000 on request.

Pt1000 resistance table values see Pt100, multiplicated by the factor of 10 .

Limit Value Switch Type TR210

for 2 Temperature-Sensors or 0/4-20 mA, 0-10 V, 2 Limits, Analog-output

TR210

Function

The limit value switch TR210 monitors up to 2 measuring inputs for Pt100 (RTD), Pt1000, thermocouples, or standard-signals 0/4-20 mA, 0-10 V.
The signals are monitored for up to 4 limits. The value of one or of both inputs can be read out at an analog output.

- Measuring and monitoring range $-170 \ldots+1820^{\circ} \mathrm{C}$
- resolution $0,1^{\circ} \mathrm{C}$ (to $999.9^{\circ} \mathrm{C}$)
- Analog output (scaleable) for 1 input, min./max. of 2 inputs or difference of 2 sensors (no isolation between inputs and output)
- 2 relay outputs
- Shifting of day/night (selectable with contact at terminals Y1/Y2)
- Universal power supply AC/ DC 24-240 V
- Easy setting with 3 buttons and preset programs
- Storing of min- and maxvalues of inputs
- Code-lock against manipulation of settings
- Terminals pluggable

2 Measuring-Inputs:

- Resistance-sensors Pt 100 (RTD), Pt1000, KTY83/84 in 2- or 3-wire-connection
- Thermocouples types B, E, J, K, L, N, R, S or T
- different sensors at both inputs possible
- Standard-signals 0/4-20 mA, 0-10 V (scaleable)

Displays:

- 4-digit for measuring value
- 2 LEDs for state of relays
- 3 LEDs sensor/difference
- 2 LEDs day/night

Application:
The TR210 is very versatile and can thus be used in many applications. Nevertheless multiple preset programs allow an easy setting.
It can be used as a limit switch or as a controller for 2 limits (with day/night shift up to 4 limits).
As a measuring transducer it can convert signals from the temperature-sensors to standard-signals or change the scaling of standard-signals. The user can also select, if minimum or maximum of 2 signals or the difference of 2 signals is connected to the analog output. For more applications see basic programs.

Switching-Functions:

- 2 relays (co-contacts)
- 2-4 limits
- Warmest/coldest sensor switches relay
- Programmable for every relay:
- hysteresis (+ or - = MIN- or MAX-function) -199.9...999.9 s
- autoreset or electronic reclosing lock
- elay-time for switching and switching back 0... 9999 s
- operating- or closed current-mode
- cyclic check of function
- Monitoring of difference in temperature
- Preset basic programs

Order-number:
T224071

Basic Programs

Technical Data

Rated supply voltageUs
2 Measuring inputs
Measuring-time
Analog output
Relay output
Test conditions
Rated ambient temperature
renge

Dimensions h x w x d

Protection housing / terminals Weight
Attachment
Program 1:
1 Temperature-sensor,

2 Limits

Application: Monitoring of a temperature for 2 limits, e.g. overtemperature with warning and switchjing off or monitoring of a temperature-range (min/max).

Program 2:
2 Temperature-Sensors,
1 Limit for each Sensor
Application: Monitoring of 2 temperatures for 1 limit each, e.g. over.temperature or as double electronic controller.

Program 3:
1 Temperature-Sensor,
2 Limits each day/night
Application: Controlling of a temperature with first limit, different for day and night.
Monitoring of the same temperature with second limit, different for day and night.

Program 4:

2 Temperature-Sensors, each 1 Limit for day/night Application: Monitoring or controlling of 2 temperatures for 2 limits, depending on operation mode, e.g. controlling of 2 circulation pumps (day/night) or of processes (active/stand-by).

Program 5:

2 Temperature-Sensores for monitoring of differences in temperature, 2 Limits
Application: Regulation or monitoring of the difference of 2 measuring-points for 2 limits, e.g. circulation pumps in solar systems.

AC/DC 24-240V, <3W, <5VA
(AC 20-264 V, DC 20,4-297 V)
Pt 100, Pt 1000 according to EN 60751
Thermocouples types B, E, J, K, L, N, R, S, according to EN 60 584, DIN 43710 0/4-20 mA (22 $), 0-10 \mathrm{~V}(13 \mathrm{k} \Omega)$ $<2,5 \mathrm{~s}$ to 5 s , depending on speed of change of signal 0/4-20 mA, max. $500 \Omega .0-10 \mathrm{~V}$, max. 10 mA (without isolation to inputs)
type 3, see "general technical informations" 2×1 co- (change-over) contact
see "general technical informations"
$-20 \ldots+60^{\circ} \mathrm{C}$
design V4: $90 \times 70 \times 58$ [mm], mounting height 55 mm IP 30 / IP 20 (terminals pluggable)
app. 200 g
on 35 mm DIN-rail or with screws M 4

Temperature-Measuring with Thermocouples

A thermocouple consists of two spot welded wires of different metals or metal alloys. When the joint (measuring point) is heated, a voltage is produced at the free ends (connection or reference junction). This effect, which is essential for the action of the thermocouple, results from the fact that a contact voltage is produced at the contact of two different metals, the value of which depends on the temperature (thermo-voltage).

The value of the contact voltage at metal junctions can be taken from the thermoelectric voltage series.

The contact value of the measuring point cannot be measured easily. When the metallic line ends form a circuit, by connecting to a measuring instrument, there are additional contact voltages at each metal junction. The total voltage in the closed circuit will equal zero as long as all junctions are on the same temperature level.

This calls for three essential requirements:

1. The open ends of the thermocouples must be led to the measuring instrument on special compensating leads in order to avoid additional contact voltages.
2. To avoid distorting contact voltages at themeasuring instrument, both connecting terminals must have the same temperature (isothermal block).
3. As with the thermocouples, only the temperature difference between the measuring point and the reference junction can be measured. The temperature at the reference junction must be kept constant (by measuring with 2 thermocouples) or the measuring instrument must automatically compensate for the error incurred by the change of the ambient temperature at the reference junction (in this case at the terminal) in some electronic way.

Thermocouples cover a vast temperature range, from
$-270^{\circ} \mathrm{C}$ to $+2800^{\circ} \mathrm{C}$. Their accuracy is guaranteed to DIN 43710 and IEC 584-1 standards which facilitates their interchangeability. Their performance curves show mainly non-linear characteristics so that a linearisation becomes necessary. Thermocouples are very small, have short response times and a stability of just a few ${ }^{\circ}$ Kelvin variation year by year. Their range of applications depends on the materials used for the thermocouple and the medium to be measured. Thermocouple suppliers give exact information with regard to the service life and the admissible maximum short-time temperatures.

Which Thermocouple for which application?

Pt 30 Rh-Pt 6 Rh Typ B DIN EN 60584

${ }^{\circ} \mathrm{C}$	0	10	20	30	40	50	60	70	80	90
0	0	$-0,002$	$-0,003$	$-0,002$	-0	0,002	0,006	0,011	0,017	0,025
100	0,033	0,043	0,053	0,065	0,078	0,092	0,107	0,123	0,140	0,159
200	0,178	0,199	0,220	0,243	0,266	0,291	0,317	0,344	0,372	0,401
300	0,431	0,462	0,494	0,527	0,561	0,596	0,632	0,669	0,707	0,746
400	0,786	0,827	0,870	0,913	0,957	1,002	1,048	1,095	1,143	1,192
500	1,241	1,292	1,344	1,397	1,450	1,505	1,560	1,617	1,674	1,732
600	1,791	1,851	1,912	1,974	2,036	2,100	2,164	2,230	2,296	2,363
700	2,430	2,499	2,569	2,639	2,710	2,782	2,855	2,928	3,003	3,078
800	3,154	3,231	3,308	3,387	3,466	3,546	3,626	3,708	3,790	3,873
900	3,957	4,041	4,126	4,212	4,298	4,386	4,474	4,562	4,652	4,742
1000	4,833	4,924	5,016	5,109	5,202	5,297	5,391	5,487	5,583	5,680
1100	5,777	5,875	5,973	6,073	6,172	6,273	6,374	6,475	6,577	6,680
1200	6,783	6,887	6,991	7,096	7,202	7,308	7,414	7,521	7,628	7,736
1300	7,845	7,953	8,063	8,172	8,283	8,393	8,504	8,616	8,727	8,839
1400	8,953	9,065	9,178	9,291	9,405	9,519	9,634	9,748	9,863	9,979
1500	10,094	10,210	10,325	10,441	10,558	10,674	10,790	10,907	11,024	11,141
1600	11,257	11,374	11,491	11,608	11,725	11,842	11,959	12,076	12,193	12,310
1700	12,426	12,543	12,659	12,776	12,892	13,008	13,124	13,239	13,354	13,470

Pt 15 Rh-Pt Typ R

 DIN EN 60584| ${ }^{\circ} \mathrm{C}$ | 0 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 0 | 0 | 0,054 | 0,111 | 0,171 | 0,232 | 0,296 | 0,363 | 0,431 | 0,501 | 0,573 |
| 100 | 0,647 | 0,723 | 0,800 | 0,879 | 0,959 | 1,041 | 1,124 | 1,208 | 1,294 | 1,380 |
| 200 | 1,468 | 1,557 | 1,647 | 1,738 | 1,830 | 1,923 | 2,017 | 2,111 | 2,207 | 2,303 |
| 300 | 2,400 | 2,498 | 2,596 | 2,695 | 2,795 | 2,896 | 2,997 | 3,099 | 3,201 | 3,304 |
| 400 | 3,407 | 3,511 | 3,616 | 3,721 | 3,826 | 3,933 | 4,039 | 4,146 | 4,254 | 4,362 |
| 500 | 4,471 | 4,580 | 4,689 | 4,799 | 4,910 | 5,021 | 5,132 | 5,244 | 5,356 | 5,469 |
| 600 | 5,582 | 5,696 | 5,810 | 5,925 | 6,040 | 6,155 | 6,272 | 6,388 | 6,505 | 6,623 |
| 700 | 6,741 | 6,860 | 6,979 | 7,098 | 7,218 | 7,339 | 7,460 | 7,582 | 7,703 | 7,826 |
| 800 | 7,949 | 8,072 | 8,196 | 8,320 | 8,445 | 8,570 | 8,696 | 8,822 | 8,949 | 9,076 |
| 900 | 9,203 | 9,331 | 9,460 | 9,589 | 9,718 | 9,848 | 9,978 | 10,109 | 10,240 | 10,371 |
| 1000 | 10,503 | 10,636 | 10,768 | 10,902 | 11,035 | 11,170 | 11,304 | 11,439 | 11,574 | 11,710 |
| 1100 | 11,846 | 11,983 | 12,119 | 12,257 | 12,394 | 12,532 | 2,669 | 12,808 | 12,946 | 13,085 |
| 1200 | 13,224 | 13,363 | 13,502 | 13,642 | 13,782 | 13,922 | 14,062 | 14,202 | 14,343 | 14,483 |
| 1300 | 14,624 | 14,765 | 14,906 | 15,047 | 15,188 | 15,329 | 15,470 | 15,611 | 15,752 | 15,893 |
| 1400 | 16,035 | 16,176 | 16,317 | 16,458 | 16,599 | 16,741 | 16,882 | 17,022 | 17,163 | 17,304 |
| 1500 | 17,445 | 17,585 | 17,726 | 17,866 | 18,006 | 18,146 | 18,286 | 18,425 | 18,564 | 18,703 |
| 1600 | 18,842 | 18,981 | 19,119 | 19,257 | 19,395 | 19,533 | 19,670 | 19,807 | 19,944 | 20,080 |

Pt 10 Rh-Pt Typ S in $m v$ temperatures in steps of $10^{\circ} \mathrm{C}$ DIN EN 60584

${ }^{\circ} \mathrm{C}$	0	10	20	30	40	50	60	70	80	90
0	0	0,055	0,113	0,173	1,234	0,299	0,365	0,432	0,502	0,573
100	0,645	0,719	0,795	0,872	0,950	1,029	1,109	1,190	1,273	1,356
200	1,440	1,525	1,611	1,698	1,785	1,873	1,962	2,051	2,141	2,232
300	2,323	2,414	2,506	2,599	2,692	2,786	2,880	2,974	3,069	3,164
400	3,260	3,356	3,452	3,549	3,645	3,743	3,840	3,938	4,036	4,135
500	4,234	4,333	4,432	4,532	4,632	4,732	4,832	4,933	5,034	5,136
600	5,237	5,339	5,442	5,544	5,648	5,751	5,855	5,960	6,064	6,169
700	6,274	3,380	6,486	6,592	6,699	6,805	6,913	7,020	7,128	7,236
800	7,345	7,454	7,563	7,672	7,782	7,892	8,003	8,114	8,225	8,336
900	8,448	8,560	8,673	8,786	8,899	9,012	9,126	9,240	9,355	9,470
1000	9,585	9,700	9,816	9,932	10,048	10,165	10,282	10,400	10,517	10,635
1100	10,754	10,872	10,991	11,110	11,229	11,348	11,467	11,587	11,707	11,827
1200	11,947	12,067	12,188	12,308	12,429	12,550	12,671	12,792	12,913	13,034
1300	13,155	13,276	13,397	13,519	13,640	13,761	13,883	14,004	14,125	14,247
1400	14,368	14,489	14,610	14,731	14,852	14,973	15,094	15,215	15,336	15,456
1500	15,576	15,697	15,817	15,937	16,057	16,176	16,296	16,415	16,534	16,653
1600	16,771	16,890	17,008	17,125	17,243	17,360	17,477	17,594	17,711	17,826

Fe-CuNi, Typ J

in mV temperatures in steps of $10^{\circ} \mathrm{C}$ DIN EN 60584 reference junction $0^{\circ} \mathrm{C}$

${ }^{\circ} \mathrm{C}$	0	-10	-20	-30	-40	-50	-60	-70	-80	-90
-200	$-7,890$	-	-	-	-	-	-	-	-	-
-100	$-4,632$	$-5,036$	$-5,426$	$-5,801$	$-6,159$	$-6,499$	$-6,821$	$-7,122$	$-7,402$	$-7,659$
0	0	$-0,501$	$-0,995$	$-1,481$	$-1,960$	$-2,431$	$-2,892$	$-3,344$	$-3,785$	$-4,215$
${ }^{\circ} \mathrm{C}$	0	10	20	30	40	50	60	70	80	90
0	0	0,507	1,019	1,536	2,058	2,585	3,115	3,649	4,186	4,725
100	5,268	5,812	6,359	6,907	7,457	8,008	8,560	9,113	9,667	10,222
200	10,777	11,332	11,887	12,442	12,998	13,553	14,108	14,663	15,217	15,771
300	16,325	16,879	17,432	17,984	18,537	19,089	19,640	20,192	20,743	21,295
400	21,846	22,397	22,949	23,501	24,054	24,607	25,161	25,716	26,272	26,829
500	27,388	27,949	28,511	29,075	29,642	30,210	30,782	31,356	31,933	32,513
600	33,096	33,683	34,273	34,867	35,464	36,066	36,671	37,280	37,893	38,510
700	39,130	39,754	40,382	41,013	41,647	42,283	42,922	43,563	44,207	44,852

NiCr-CuNi, Typ E

 DIN EN 60584| ${ }^{\circ} \mathrm{C}$ | 0 | -10 | -20 | -30 | -40 | -50 | -60 | -70 | -80 | -90 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| -200 | $-8,824$ | $-9,063$ | $-9,274$ | $-9,455$ | $-9,604$ | $-9,719$ | $-9,797$ | $-9,835$ | | |
| -100 | $-5,237$ | $-5,680$ | $-6,107$ | $-6,516$ | $-6,907$ | $-7,279$ | $-7,631$ | $-7,963$ | $-8,273$ | $-8,561$ |
| 0 | 0 | $-0,581$ | $-1,151$ | $-1,709$ | $-2,254$ | $-2,787$ | $-3,306$ | $-3,811$ | $-4,301$ | $-4,771$ |
| | | | | | | | | | | |
| ${ }^{\circ} \mathrm{C}$ | 0 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 |
| 0 | 0 | 0,591 | 1,192 | 1,801 | 2,419 | 3,047 | 3,683 | 4,329 | 4,983 | 5,646 |
| 100 | 6,317 | 6,996 | 7,683 | 8,377 | 9,078 | 9,787 | 10,501 | 11,222 | 11,949 | 12,681 |
| 200 | 13,419 | 14,161 | 14,909 | 15,661 | 16,417 | 17,178 | 17,942 | 18,710 | 19,481 | 20,256 |
| 300 | 21,033 | 21,814 | 22,597 | 23,383 | 24,171 | 24,961 | 25,754 | 26,549 | 27,345 | 28,143 |
| 400 | 28,943 | 29,744 | 30,546 | 31,350 | 32,155 | 32,960 | 33,767 | 34,574 | 35,382 | 36,190 |
| 500 | 36,999 | 37,808 | 38,617 | $, 9,426$ | 40,236 | 41,045 | 41,853 | 42,662 | 43,470 | 44,278 |
| 600 | 45,085 | 45,891 | 46,697 | 47,502 | 48,306 | 49,109 | 49,911 | 50,713 | 51,513 | 52,312 |
| 700 | 53,110 | 53,907 | 54,703 | 55,498 | 56,291 | 57,083 | 57,873 | 58,663 | 59,451 | 60,237 |
| 800 | 61,022 | 61,806 | 62,588 | 63,368 | 64,147 | 64,924 | 65,700 | 66,473 | 67,245 | 68,015 |
| 900 | 68,783 | 69,549 | 70,313 | 71,075 | 71,835 | 72,593 | 73,350 | 74,104 | 74,857 | 75,608 |

Cu-CuNi, Typ T
in mV temperatures in steps of $10^{\circ} \mathrm{C}$ DIN EN 60584

${ }^{\circ} \mathrm{C}$	0	-10	-20	-30	-40	-50	-60	-70	-80	-90
-200	$-5,603$	-	-	-	-	-	-	-	-	-
-100	$-3,378$	$-3,656$	$-3,923$	$-4,177$	$-4,419$	$-4,648$	$-4,865$	$-5,069$	$-5,261$	$-5,439$
0	0	$-0,383$	$-0,757$	$-1,121$	$-1,1475$	$-1,819$	$-2,152$	$-2,475$	$-2,788$	$-3,089$
${ }^{\circ} \mathrm{C}$	0	10	20	30	40	50	60	70	80	90
0	0	0,391	0,789	1,196	1,611	2,035	2,467	2,908	3,357	3,813
100	4,277	4,749	5,227	5,712	6,204	6,702	7,207	7,718	8,235	8,757
200	9,286	9,5820	10,360	10,905	11,456	12,011	12,572	13,137	13,707	14,281
300	14,860	15,443	16,030	16,621	17,217	17,816	18,420	19,027	19,638	20,252

Fe-CuNi, Typ L
in mV temperatures in steps of $10^{\circ} \mathrm{C}$ DIN 43710 reference junction $0^{\circ} \mathrm{C}$

${ }^{\circ} \mathrm{C}$	0	-10	-20	-30	-40	-50	-60	-70	-80	-90
-200	$-8,15$	-	-	-	-	-	-	-	-	-
-100	$-4,75$	$-5,15$	$-5,53$	$-5,90$	$-6,26$	$-6,60$	$-6,93$	$-7,25$	$-7,56$	$-7,86$
0	0	$-0,51$	$-1,02$	$-1,53$	$-2,03$	$-2,51$	$-2,98$	$-3,44$	$-3,89$	$-4,33$
${ }^{\circ} \mathrm{C}$	0	10	20	30	40	50	60	70	80	90
0	0	0,52	1,05	1,58	2,11	2,65	3,19	3,73	4,27	4,82
100	5,37	5,92	6,47	7,03	7,59	8,15	8,71	9,27	9,83	10,39
200	10,95	11,51	12,07	12,63	13,19	13,75	14,31	14,88	15,44	16,00
300	16,56	17,12	17,68	18,24	18,80	19,36	19,92	20,48	21,04	21,60
400	22,16	22,72	23,29	23,86	24,43	25,00	25,57	26,14	26,71	27,28
500	27,85	28,43	29,01	29,59	30,17	30,75	31,33	31,91	32,49	33,08
600	33,67	34,26	34,85	35,44	36,04	36,64	37,25	37,85	38,47	39,09
700	39,72	40,35	40,98	41,62	42,27	42,92	43,57	44,23	44,89	45,55
800	46,22	46,89	47,57	48,25	48,94	49,63	50,32	51,02	51,72	52,43

NiCr-Ni, Typ K DIN EN 60584

in mV temperatures in steps of $10^{\circ} \mathrm{C}$

| ${ }^{\circ} \mathrm{C}$ | 0 | -10 | -20 | -30 | -40 | -50 | -60 | -70 | -80 | -90 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| -200 | $-5,891$ | - | - | - | - | - | - | - | - | - |
| -100 | $-3,554$ | $-3,852$ | $-4,138$ | $-4,411$ | $-4,669$ | $-4,913$ | $-5,141$ | $-5,354$ | $-5,550$ | $-5,730$ |
| 0 | 0 | $-0,392$ | $-0,778$ | $-1,156$ | $-1,527$ | $-1,889$ | $-2,243$ | $-2,587$ | $-2,920$ | $-3,243$ |
| | | | | | | | | | | |
| ${ }^{\circ} \mathrm{C}$ | 0 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 |
| 0 | 0 | 0,397 | 0,798 | 1,203 | 1,612 | 2,023 | 2,436 | 2,851 | 3,267 | 3,682 |
| 100 | 4,096 | 4,509 | 4,920 | 5,328 | 5,735 | 6,138 | 6,540 | 6,941 | 7,340 | 7,739 |
| 200 | 8,138 | 8,539 | 8,940 | 9,343 | 9,747 | 10,153 | 10,561 | 10,971 | 11,382 | 11,795 |
| 300 | 12,209 | 12,624 | 13,040 | 13,457 | 13,874 | 14,293 | 14,713 | 15,133 | 15,554 | 15,975 |
| 400 | 16,397 | 16,820 | 17,243 | 17,667 | 18,091 | 18,516 | 18,941 | 19,366 | 19,792 | 20,218 |
| 500 | 20,644 | 21,071 | 21,497 | 21,924 | 22,350 | 22,776 | 23,203 | 23,629 | 24,055 | 24,480 |
| 600 | 24,905 | 25,330 | 25,755 | 26,179 | 26,602 | 27,025 | 27,447 | 27,869 | 28,289 | 28,710 |
| 700 | 29,129 | 29,548 | 29,965 | 30,382 | 30,798 | 31,213 | 31,628 | 32,041 | 32,453 | 32,865 |
| 800 | 33,075 | 33,685 | 34,093 | 34,501 | 34,908 | 35,313 | 35,718 | 36,121 | 36,524 | 36,925 |
| 900 | 37,326 | 37,725 | 38,124 | 38,522 | 38,918 | 39,314 | 39,708 | 40,101 | 40,494 | 40,885 |
| 1000 | 41,276 | 41,665 | 42,053 | 42,440 | 42,826 | 43,211 | 43,595 | 43,978 | 44,359 | 44,740 |
| 1100 | 45,119 | 45,497 | 45,873 | 46,249 | 46,623 | 46,995 | 47,367 | 47,737 | 48,105 | 48,473 |
| 1200 | 48,838 | 49,202 | 49,565 | 49,926 | 50,286 | 50,644 | 51,000 | 51,355 | 51,708 | 52,060 |
| 1300 | 52,410 | 52,759 | 53,106 | 53,451 | 53,795 | 54,138 | 54,479 | 54,819 | - | - |

Mains Monitoring

Phase-Monitor Relays Type PS 64
Phase-AsymmetryPhase-SequenceUnder- and OvervoltagePhase-Sequence-ChangeMotorload $\cos \varphi$
Voltage-Monitor Relays Type SW 71
DC-Voltage-Monitor Relays
AC-Voltage-Monitor Relays3 AC-Voltage-Moitor Relays
Current-Relays for Current Recognition Type STW 83
Current-Relays with OR-circuitsCurrent-Relays with AND-circuits
Electronic Current-Transformers / Current-Sensors 90
Current-DetectionMeasuring-Transducers
Current-Relays adjustable Type STW 100
Current-RelaysCurrent-Transformers
Frequency-Relay Type FR 112
Measuring Relays for Generation of own Energy 115
Current Relay Type SolarYes 120

Phase monitoring Type PS Phase asymmetry - Phase sequence

General
The PS-type phase protector safeguards electromotors against 2-phase operation even in the case of feedback via the motor. Depending on the model, the device has the following functions or connections.

Nowadays, more and more modern electrical switching plants for power generation and distribution, tooling and finishing machinery and a number of other drives are equipped with metering and control devices. However the use of such instruments also requires that the mains voltage feed varies only slightly from the
rated value, as otherwise the necessary accuracy of the measuring results or control commands will not be achieved. In case of deviations in the rated voltage either exceeding or falling below a pre-defined value, the plant must be switched off, or at least warn the operator via an optical or acoustic signal.

Special applications where these PS devices can be put into operation are building machinery, hoisting plants, escalators and travelling staircases, cranes, tooling machinery of all kinds, and all switching frequency motors with high starting and braking times.

	PS2DK	PSSW1	DRR10	DRR20	COSFI100V
Phase asymmetry / failure	X	X		X	
Phase sequence	X	X	X	X	
Undervoltage		X		X	
Overvoltage		X			
Connection for PTC-sensor			X		
automatic change of wrong phase-sequence			X	X	
Monitoring of COSFI/ true current					X
Monitoring of current-direction					X
Housing	K	K	V4	K	V4

Phase-Asymmetry Relay Type PS2DK
 Monitoring of Phase-Asymmetry and Phase Sequence

Phase-Asymmetry Relay PS2DK

Phase asymmetry relays PS2DK are used for the protection of electric motors against asymmetries in the 3 -phase mains without neutral and for monitoring the phase-sequence.
The switching-point is adjustable and can be adapted to the situation in the mains.
If a motor, running with 2 phases, creates the 3rd phase, the sensitivity can be increased.
With mains with high harmonics it can be necessary to reduce the sensitivity.
When the sensitivity is reduced to minimum ($25 \%=$ potentiometer turned fully right), the device works as a phase-sequence relay. It trips only at wrong phasesequence or missing phase.

Technical Data

Rated supply Voltage Us
Admissible tolerance
Power consumption
Frequency
Relay output
Type of contact
Test conditions rated ambient temperature range

Switching point asymmetry Hysteresis
Delay at phase-loss (< 240 V)
Switch-back delay at voltage recovery
Switching-delay at asymmetry
Switching point at symmetric decrease of voltage

Dimensions ($\mathrm{H} \times \mathrm{W} \times \mathrm{D}$)
Attachment
Protection housing / terminals Weight

If there is a wrong phase-sequence when switching on the device, the relay does not pick up.

- Monitoring of phase-asymmetry
- Monitoring of phase-sequence
- Adjustable sensitivity 5 ... 25%
- Output-relay with 2 change-over contacts
- Switching delay adjustable 0,1 ... 5 s
- LED for display state of operation

Order-number
P222505

3-phase $380-415 \mathrm{~V}$, without neutral
$+10 \% . . .-15 \%$
app. 3 VA
$50 / 60 \mathrm{~Hz}$
2 change-over contacts
type 2 see "General technical informations"
see "General technical informations"
$-20^{\circ} \mathrm{C} . .+55^{\circ} \mathrm{C}$
adjustable 5...25\%
app. 2\%
app. 0,2 s
app. 0,5 s
adjustable 0,1... 5 s
not defined

Housing K: $75 \times 22,5 \times 115 \mathrm{~mm}$
on 35 mm DIN-rail or with screws M4 (option)
IP 30/20
150 g

Monitor for 3－phase Type PSSW1

Phase Asymmetry，Phase Sequence，Over－and Undervoltage

Relays for 3－phase networks type PSSW1 monitor 3－phase networks for phase－sequence， asymmetry and over－and un－ dervoltage．
Applications：Monitoring of 3－pha－ se－networks at heat pumps， compressors or at machines at building sites．

Functions：

－Over－and undervoltage，adju－ stable $\pm 2-20 \%$（common）
－Asymmetry adjustable 5－15\％
－Phase loss
－Phase sequence
－Switching delay adjustable 0，1－12 s（for voltage and asymmetry）
－Bifrequential measuring input $50 / 60 \mathrm{~Hz}$

Displays：
4 LEDs for：
－Over－／undervoltage
－Asymmetry
－Phase－sequence／loss
－State of relay

Order－numbers：

supply－voltage	AC 230 V	P222525
supply－voltage	AC 400 V	P222526

PSSW1

 DrehstromwächterZロロートレ Made in Germany

AC 230 V ，alt．AC $400 \mathrm{~V}, 50 / 60 \mathrm{~Hz},<3 \mathrm{VA}$ $\pm 20 \%$

1 change－over contact（co）
type 2 see＂general technical informations＂
see＂general technical informations＂
$-20^{\circ} \mathrm{C} \ldots+55^{\circ} \mathrm{C}$
switching point adjustable 5．．． 15 \％
app． 2 \％
adjustable 0，1．．． 12 s
switching point app． 50%
app． 5 \％
0，1 s
measuring voltage 3 AC 400 V
adjustable $\pm 2 \ldots 20$（common，symmetric）
app． 1 \％
adjustable 0，1－12 s
housing K： $75 \times 22,5 \times 110 \mathrm{~mm}$
on 35 mm DIN－rail or with 2 screws M4（option）
IP 40 ／IP 20
160 g

Phase-Sequence Relay Type DRR10 automatic change of wrong Phase-Sequence

DRR10

Phase-sequence relays DRR10 measure the sequence of the phases when being switched on and switch - if necessary - the rotation of the field by changing 2 phases.
The integrated PTC-monitor protects the motor from overheating.

Applications are especially machines and equipment, that is operated at variable locations e.g. at building sites. Pumps, compressors and vacuum cleaners always run correctly. No more search for faults or change of wiring necessary.

- automatic change of wrong phase-sequence when connected falsely
- running backward of motors is avoided
- integrated PTC-protection for motor
- enable-input for direct switching on/off of the motor with DRR10
- max. $3 \times 12 \mathrm{~A}$
- switch-on currents $30 \mathrm{~A} /$ max. $4 \mathrm{~s} / 60 \mathrm{~A} / \mathrm{max} .1 \mathrm{~s}$
- higher currents with external contactors
- integrated protection for relay contacts
- integrated protection from over-temperature
- housing for mounting in fuse-boxes or switchgearcabinets, mounting height 55 mm
order-number: P222546

Technical Data

rated supply voltage Us admissible tolerance Us
relay output switching voltage conventional thermal current Ith switch-on current (10% on) recommended fuse expected contact life mech. expected contact life electr.
inputs
T1-T2
E1-E2
rated ambient temp. range
housing ($\mathrm{H} \times \mathrm{W} \times \mathrm{D}$) mm
fitting position
attachment
protection housing/terminals weight

3 AC $400 \mathrm{~V}, 50 / 60 \mathrm{~Hz},<3 \mathrm{VA}$
$+10 \%$... -20\%
2×2 normally opened contacts (no)
max. AC 440 V
12 A
$30 \mathrm{~A} /$ max. $4 \mathrm{~s}, 60 \mathrm{~A} /$ max. 1 s
gG/gL 16 A
30×10^{6} operations
1×10^{6} operations at AC $400 \mathrm{~V} / 3 \mathrm{~A}$
2×10^{5} operations at AC $400 \mathrm{~V} / 6 \mathrm{~A}$ cosfi 0,5
without separation of potential from supply-voltage PTC-thermistors according to DIN 44081/44082
potential-free contact for AC 400 V
$-20^{\circ} \mathrm{C} . .+55^{\circ} \mathrm{C}$
design V4: $90 \times 70 \times 58 \mathrm{~mm}$
any
on 35 mm DIN rail according to EN 60715 or 2 screws M 4
IP 30 / IP 20
app. 230 g

Phase Sequence-Change Relay DRR20 with integrated Monitoring of Undervoltage and Asymmetry

Phase Sequence-Change Relay DRR20

Technical Data

Phase-Sequence-Change Relays DRR20 measure the sequence of the phases and switch - if necessary the rotation of the field. At the output (connect relays K1 and K2 in series in this application) two contactors are connected. The contactor at the normally-open contact of K2 switches the phases $1: 1$ without changing them, the second (at normally-closed contact) changes 2 phases.

When switching on with phasesequence ok, relay K2 picks up. With wrong phase-sequence it remains released. After K2 has switched, K1 picks up. K1 also releases first. This makes sure, that no wrong contactor can be picked up under any condition. Additionally the DRR20 monitors the three phases for asymmetry and undervoltage. If the limits are exceeded, the K1 switches off (respectively doesn't pick up) and protects the connected motor from damage.
The device can also be used as a monitor for undervoltage, asymmetry or phase-sequence.

Applications are machines and equipment that is operated at variable locations, e.g. at building

Rated supply voltage Us
Admissible tolerance Us
Output relay
Type of contact

Output relay
Type of contact
Test conditions
Rated ambient temperature range

Limit asymmetry
Limit undervoltage
Hysteresis
Delay undervoltage/asymmetry
Delay phase-loss (<60\% Us)
Pick-up delay after recovery of Us
Delay K2 - K1
Dimensions (h x w x d) mm Fitting position Attachment

Protection housing / terminals
Weight
sites. Pumps, compressors and vacuum-cleaners always run correctly and they are protected from damage by undervoltage or asymmetry.

- automatic change of wrong phase-sequence when connected falsely (2 contactors afforded)
- running backward of motors is avoided
- no switching on at asymmetry or undervoltage
- relay K2 picks up when phase-sequence is correct
- relay K1 picks up (after K2) when symmetry and voltage is correct
- 3 LEDs for state of relays and errors
- measuring-voltage 3 AC 400 V
- limit asymmetry adjustable 5... 25 \%
- limit undervoltage adjustable 70... 95 \%
- alarm-delay adjustable $0,1 \ldots 10 \mathrm{~s}$ (undervoltage and asymmetry)
- no supply-voltage required

Order-number P222551

3-phase, 400 V without N
+20\%...-30\%
ca. 3 VA
$50 / 60 \mathrm{~Hz}$

2 change-over contacts (co)
type 2 see "general technical informations"
see"general technical informations"
$-20^{\circ} \mathrm{C} \ldots+55^{\circ} \mathrm{C}$
adjustable $5 . . .25 \%$
adjustable 70... 95 \%
app. 2\%
adjustable $0,1 \ldots 10 \mathrm{~s}$
$<0,2$ s
$<0,5$ s
app. 100 ms
housing K: $75 \times 22,5 \times 115 \mathrm{~mm}$
any
on 35 mm DIN rail according to EN 60715 or
2 screws M 4
IP 30/20
150 g

Load and Current-Monitor COSFI100V Active Current with direction,Over- and Underload and $\cos \varphi$

Function and features:
At an AC-motor (inductive load) the phase of the current is retarded to the voltage by the phase angle φ. With decreasing load, this angle increases and the $\cos \varphi$ decreases. Thus the load at the shaft of the motor can be measured.
The load monitor COSFI100V can measure sinusoidal signals.

- for networks AC and 3 AC
- Digital display for $\cos \varphi$ and true current
- 2 limits / alarms
- min, max or min/max for each alarm
- Monitoring of $2 \mathrm{x} \cos \varphi, 2 \mathrm{x}$ true current or $1 \mathrm{x} \cos \varphi$ and 1 x true current

Load monitors protect motors in 1- or 3-phase mains from overor underload. They are simply switched into the supply-line of the motor and monitor the phase angle between voltage and current and/or the true current.

The power factor cos fi has its greatest alteration at small loads at the motor. Therefore monitoring this parameter is suitable to recognize underload.
The current of the motor increases most at high loads. Provided that the motor is not oversized, the current is more suitable for monitoring overload.

The COSFI 100 V can monitor both values. It is even possible to monitor the power factor with alarm 1 for underload and protect the drive from overload by monitoring the current with alarm 2.
This allows detection of a breaking V-belt or clogging of a filter or a valve. A local sensor near the motor is not necessary.

- Scaling of display (factor of current-transformer)
- Hysteresis and switchingdelay programmable
- Auto-reset or interlocked switching
- Programmable attempts (1...10) for restart
- Auto-enable (current) or external signal
- Start-up delay programmable $0 . . .99$ s
- Current input max. 10A, more with transformers
- Detection of breaks
- Input for PTC-thermistors
- Housing for mounting in fuseboxes or switchboards

As monitor for current direction, value and direction of active current in one phase is measured. Thus it can be used for the direction dependent monitoring of AC-current.

With its digital display and many setting options, it can be individually adapted to the application.

Application $\cos \varphi /$ active current:

- Monitoring of V-belt (slip and destruction)
- Fan-monitoring
- Pump-monitoring
- Conveyor systems
- Agitators
- excessive wear
- wear-out of tools
- Protection of motors, drives and plants from overload

Application current direction:

- Optimizing of own consumption of energy in photovoltaik plants.
Consumers can be switched on or off depending on power available. By measuring current at the feed point it can be detected, wheather there is enough power available to start heat pumps, cooling units or other consumers.
- Warning or shut-down when a generator is consuming energy instead of producing.

Rated supply voltage Us
Power factor $(\cos \varphi)$
Hysteresis ($\cos \varphi$)
Nominal current of motor
Overload capacity
Input Voltage L1-L2-L3
Relay
Type of contact
Test conditions Rated ambient Temp. Range

Dimensions ($\mathrm{H} \times \mathrm{W} \times \mathrm{D}$) mm Attachment

Protection Housing/Terminals Weight

AC $230 \mathrm{~V},+10 \% /-15 \%, 3 \mathrm{VA}, 50 \mathrm{~Hz}$
-0,99...+0,99
0,05...0,20
$0,2 \ldots 10 \mathrm{~A}$ (higher currents with current-transfomers)
10 A continuously, 15 A max. 3 s
AC $100 \ldots . .400 \mathrm{~V}, 48 \ldots 62 \mathrm{~Hz}$
2 change-over contacts (co)
Type 2 (see "general technical informations")
see "general technical informations"
$-20^{\circ} \mathrm{C} . .+55^{\circ} \mathrm{C}$
Design V4: $90 \times 70 \times 58 \mathrm{~mm}$, mounting height 55 mm on rail 35 mm according to EN 60715 or with screws M4 (option)
IP 30/IP 20
app. 300 g

Voltage Monitoring Types SW

Modern electrical switching plants for power generation and distribution, for tooling and finishing machinery and a number of other drives, are generally equipped with control devices. The use of such instruments, however, also requires that the mains voltage differs only slightly from its nominal value, as otherwise the required accuracy of the measuring results or control commands will not be achieved, or downstream devices may be destroyed by overvoltage.

ZIEHL SW-type voltage monitors are used to monitor the mains voltage in DC, AC and 3-phase networks for under- and/or overvoltage. In the case of deviation of the rated voltage the plant must be switched off or the operator should be warned by an optical or acoustic signal.

Special applications where the SW device can be used are in building machinery, hoisting plant, escalators and travelling staircases, cranes, tooling machinery of all kinds, switching frequency motors and motors with high starting and braking times, as well as emergency plant and electronic devices.

The following table provides a summary of the different models of the ZIEHL-voltage monitors.

Summary

Voltage	DC	AC/DC / 3AC	AC / 3AC	3AC			
Type Function	STW1000V2 \uparrow	SW32V $\uparrow \downarrow$	SW31V \downarrow	UFR1001 $\uparrow \downarrow$	UFR1001E $\uparrow \downarrow$	SPI1021 $\uparrow \downarrow$	SW31K \downarrow
Monitoring of - Undervoltage	-	X	X	X	X	X	X
- Overvoltage	x	x	-	x	x	X	-
Switching point adjustable	Scale	digital	-	digital	digital	digital	-
Relay output	1 U	2 U	2 U	2 U	2 U	2 U	1 U
Housing	$\vee 2$	V 4	V 2	V 4	V6	V6	K

Other devices for monitoring of voltage AC/DC you can find at chapter MINIPAN Digital Panelmeters. The Limit-Value-Switch TR210 monitors voltages of DC 0-10 V.

Function and Features

When the mains voltage turns on, the integrated relay closes if the voltage values in the mains to be monitored do not fall short or are exceeded. The relay releases if the set limit value falls short. The instruments with overvoltage monitoring switch off if their upper limit is exceeded. According to the switching hysteresis, the switchback points are closer to the rated voltage than to switch off points (see electr. Data).

Single-phase instruments measure phase against N (the single-phase measuring principle). 3-phase current instruments monitor the voltage phase against phase.

Upon request the instruments can also be equipped with measurement phase against N .

These instruments operate with high reliability - even in mains with high interference voltage superimposition - by using integrated overvoltage protection against voltage peaks.

DC Limit Relay for Standard Signals
 DC 0/4-20 mA, 0/2-10 V

Art.-no: AC/DC 24-240 V S225677

Technical Data

ZIEHL STW1000V2 current relays monitor standard signals from instrument transformers for compliance with a limit value. Units can be wired in series (current) or in parallel (voltage) to monitor multiple limits.
Measurement inputs for 0/4-20 mA and $0-10 \mathrm{~V}$, adjustable hysteresis and switching delays plus the selection facility to choose between the normally closed current and normally opened current principle for the relay make it a universal limit switch.

- Measurement inputs $0-20 \mathrm{~mA}$ / 0-10 V, switchable to 4-20 mA / 2-10 V
- Limit adjustable 0-100 \%
- Hysteresis adjustable 5-30 \%
- On-delay adjustable 0.1... 10 s
- Response-delay adjustable 0.1... 10 s
- Output relay 1 change-over contact
- Operating or close-circuit current with bridge selectable
- LEDs for service condition display
- Universal power supply AC/ DC 24-240 V
- Panel mounted distributor housing 35 mm wide (2 TE),
- Installation height 55 mm

Rated supply voltage Us

Output relay
Type of contact
Test conditions
Function
Measurement inputs
Switch point/limit
Hysteresis
Adjustment error
Repeatability
Temperature influence
On-delay don
Response-delay doff
Rated ambient temperature range
Dimensions $\mathrm{H} \times \mathrm{W} \times \mathrm{D}$
Attachment
Protection housing / terminals
Weight

Application:
Monitoring nearly any measured quantity in connection with instrument transformers, e.g., in plants and controls.

1) $0 \ldots . .20 \mathrm{~mA}, 0 \ldots 10 \mathrm{~V}$
2) $4 \ldots 20 \mathrm{~mA}, 2 \ldots 10 \mathrm{~V}$
3) Ruhestrom / closed current
4) Arbeitsstrom / operating current

AC/DC 24-240 V, 0/50/60 Hz, < 2W, < 3VA (DC 20,4-297 V, AC 20-264 V)

1 change-over contact
Typ 3 see "general technical information" see "general technical informations"

Maximum

DC 0/4 ... $20 \mathrm{~mA}, 20 \Omega$
DC $0 . . .10 \mathrm{~V}, 63 \mathrm{k} \Omega$
adjustable 0... 100%
adjustable $5 . . .30 \%$ of set value
< 10% of span
< 0,2\%
$\leq 0,05 \% / K$
adjustable $0,1 \ldots 10 \mathrm{sec}$.
adjustable $0,1 \ldots . .10 \mathrm{sec}$.
$-20^{\circ} \mathrm{C} \ldots+55^{\circ} \mathrm{C}$
Design V2: $90 \times 35 \times 58$ [mm], mounting height 55 mm on 35 mm DIN rail EN 60715 or screws M4 OP 30 / IP 20
app. 130 g

Voltage Relay for three-phase current also for alternating current networks

Modern electrical switchgear for energy generation and distribution, for treatment and processing machines and for a variety of other drives are usually equipped with measuring and controlengineering devices.
However, the use of such devices demands that the supplied mains voltage deviates only slightly from the nominal value as otherwise the required accuracy of the

When the mains voltage is applied, the integrated relay picks up if the voltage value preset for the network to be monitored is not undercut. If the set limit is undercut, the relay releases.
Type SW voltage monitors comply with Class III acc. VDE 0435 Part 303, Para. 4.8.2, for static measuring relays (SMR).

Undervoltage monitors (\downarrow) for three-phase current networks with N and alternating voltage networks. The switching pointlies at approx. 80% UNom. Hysteresis is approx. 5%. The voltages of the 3 phases are measured against the neutral conductor.
A green LED indicates the unit is ready for service. During undervoltage (<80\%), the relay (2 change-over contacts) releases and the green LED goes out. The housing can be snapped onto 35 mm mounting rails and is perfectly suited for installation in distribution cabinets.

Rated Supply Voltage Us Frequency

Output Relay
Type of contact
Test conditions
Rated ambient temperature range
Hysteresis
Delay relay, undervoltage at voltage breakdown

Dimensions H x W x D
Protection housing/terminals
measurements or the actuating signal is not attained, or downstream units are destroyed by overvoltage.

SW series voltage monitors from ZIEHL are used to monitor the mains voltage in direct, alternating and three-phase current networks for undervoltage and/or overvoltage. If the nominal voltage deviates by various values which, depending on the consumer, are not allowed to be undercut, the involved system needs to be disconnected, or at least the operator needs to be optically or acoustically warned.

Features:

- Monitoring three-phase current networks 3 AC 400 V with neutral conductor
- Monitoring alternating current networks AC 230 V (connect inputs L1/2/3)
- Monitoring own power supply
- Switching point fixed 80 \%
- Output relay 2 change-over contacts
- Panel mounted housing, 35 mm wide

Order-number: S222281

AC 230 V, $+10 \ldots-30 \%$, < 5 VA
$50 / 60 \mathrm{~Hz}$
2change-over contacts
Type 2 see "general technical informations" see "general technical informations"
$-20^{\circ} \mathrm{C} . . .+55^{\circ} \mathrm{C}$
approx. 5\% Unom
L1/N: ca. 400 ms, L2/L3: ca. 1 s
Design V2: $90 \times 35 \times 58$ [mm], mounting height 55 mm IP 30 / IP 20

Universal Voltage Monitor SW32V

Over- and Undervoltage for DC-, AC- and 3AC voltages

Description

The voltage-relay SW32V is a high-grade voltage monitor with a wide measuring-range for monitoring DC-, AC- and 3-phase voltages for over- and/or undervoltage.
In3-phase powernetworks phasesymmetry and phase-sequence can also be monitored.
The limits are set in Volts. Thus the device can be used at different nominal voltages.

The digital display shows the measured value as well as it helps setting the limits, switching-delays and switching functions.

Application:

As voltage monitor in equipment for generation or ditribution of electric energy, especially in photovoltaic plants and block heating stations,
Monitoring of voltage in machines and plants to protect them from damage caused by failure or deviation of voltage.

General:

- monitoring of voltage in DC networks DC 10... 600 V
- monitoring of voltage in AC networks AC 15... 480 V
- monitoring of voltage in 3-phase networks with/without neutral 3AC 26... 830 V
- preset values for grid- and plant protection acc. to BDEW standard
- Asymmetry (5...50\%) and phase-sequence-monitoring selectable
- measuring of True RMS
- 2 alarms / relays, each with 1 changeover-contact
- setting of limits and hysteresis in VOLT
- simulation-function to test settings
- codelock againstmanipulation of settings
- universal power supply AC/DC 24-270 V
- housing for DIN-rail-mount, 70 mm wide, height 55 mm

Display:

- 3 digit display for measured values and settings
- MIN/MAX-values of measured voltages
- 4 LEDs for alarm
- 4 LEDs for displayed inputs
- 2 LEDs for states or relays
- resolution <100V: 0,1V

Switching functions:

- overvoltage with hysteresis, switching- and switchback time
- undervoltage with hysteresis, switching- and switchback time
- asymmetry / phase-sequence
- relay-function normally opened mode/normally closed mode, reclosing lock

Order-number: S222276

Power Supply
Relay-Output

Measuring Input
Relay-Output

Rated supply voltage Us

Measuring voltage DC
Measuring voltage phase/phase
Measuring voltage phase/neutral
Frequency
Measuring time DC
Measuring time AC
Measuring accuracy DC
Measuring accuracy AC with N
without N

Hysteresis
Range asymmetry
Hysteresis asymmetry
Error asymmetry
Switching delay
Switch-back delay
Time until ready after applying Us

AC/DC 24-270 V, 0/45... $100 \mathrm{~Hz},<5 \mathrm{VA}$
DC: 20,4... 297 V, AC: 20,4... 297 V
2 change-over contacts
type 2 see "general technical informations"

DC 10... 600 V
AC $26 \ldots 830 \mathrm{~V}$
AC $15 . . .480 \mathrm{~V}$
40... 100 Hz

DC average over 50 ms
< 50 ms
$>100 \mathrm{~V}$: $0,5 \%$ of value ± 1 Digit
$<100 \mathrm{~V}$: $0,5 \%$ of value ± 5 Digit (res. $0,1 \mathrm{~V}$)
$>100 \mathrm{~V}$: $0,8 \%$ of value ± 1 Digit
$<100 \mathrm{~V}$: $0,8 \%$ of value ± 5 Digit (res. $0,1 \mathrm{~V}$)
$>100 \mathrm{~V}$: $1,0 \%$ of value ± 1 Digit
$<100 \mathrm{~V}$: $1,0 \%$ of value ± 5 Digit (res. $0,1 \mathrm{~V}$)
adjustable AC 1... 99 V
5...50\%
fest 1\%
$\pm 15 \%$ of set value
0,05...9,99 s
$0 . .999$ s
$\leq 300 \mathrm{~ms}$ (+ switch-back delay)

EN 60255
6000 V
III
2
AC 690 V
100 \%
$-20^{\circ} \mathrm{C} . . .+55^{\circ} \mathrm{C}$
EN 60 068-2-2 dry heat
EN 61 000-6-2
EN 61 000-6-4

Dimensions (h x w x d)
Protection housing
Protection terminals
Attachment
Weight

Design

V4
$90 \times 70 \times 58 \mathrm{~mm}$, mounting height 55 mm IP 30
IP20
DIN-rail 35 mm or screws M4
app. 200 g

Rated impulse voltage
Overvoltage catagory
Pollution degree
Rated Insulation voltage
Operationg time
Permissible ambient temperature
EMC - immunity
EMC - emission

Housing

Voltage- and Frequency-Relay UFR1001

with integrated Vector-Shift-Relay, Sealable

UFR1001

The voltage- and frequency-relay UFR1001 monitors voltage and frequency in two- or three-phase networks with or without neutral and switches off rapidly when required.
The device can be easily adapted to the requirements of the carrier of the power network.
With the integrated vector-step relay it can also monitor networks at synchronous generators.
After selecting a basic program, for each relay limits can be programmed for over-/undervoltage and over-/underfrequency. In programs with vector-stepmonitoring, K 2 is used for vectorstep only.
Applications are monitoring power-networks at great solarplants, in block power heating stations, also with synchronous generators (vector shift) or generally monitoring the quality in power networks at machines or power-supplies.

- Monitoring of over- and undervoltage $40 . . .520 \mathrm{~V}$
- monitoring of over- and underfrequency $45 \ldots 65 \mathrm{~Hz}$
- monitoring of quality of voltage (10 -minutes-average)
- monitoring of vector-shift $2 \ldots 20^{\circ}, 1$ or 3 -phase
- Switching-delay adjustable <0,05...60,0 s
- Switching-back-delay adjustable $0 . . .1000 \mathrm{~s}$
- Alarm-counter for up to 100 alarms (with measured value and reason)
- Added time of alarm up to 999 hours. Displays the time, alarms have been active (while supply voltage applied only)
- LEDs for alarms, allocation of values and states of relays
- 2 output-relays, each for monitoring frequency and/ or voltage
- function of relays (nc- or no -operating mode) programmable
- interlocked switching or autoreset
- input for Enable / Reset
- easy programming by help of basic programs
- Sealing of settings is possible
- code-lock against manipulation of settings
- universal power-supply AC/DC $24-270 \mathrm{~V}$
- housing for DIN-rail-mount, 70 mm wide, mounting height 66 mm

Power supply	Rated supply voltage Us	AC/DC 24-270 V, 0/45... $65 \mathrm{~Hz},<5 \mathrm{VA}$ DC: 20,4... $297 \mathrm{~V}, \mathrm{AC}: 20,4 \ldots 297 \mathrm{~V}$
Relay output		2 change-over contacts type 2, see "general technical informations"
Voltage	Measuring voltage phase-phase Measuring voltage phase - N Hysteresis Frequency Error (with N) Error (without N) Measuring functions Switching-delay Switching-back delay (zero- voltage-proof)	AC $40 . . .520 \mathrm{~V}$ AC $40 . . .300 \mathrm{~V}$ adjustable 1... 99 V $45 . . .65 \mathrm{~Hz}$ $\pm 0,8 \%$ of measured value ± 1 Digit $\pm 1 \%$ of measured value ± 1 Digit 3-phase with / without neutral, single phase to neutral adjustable 0,05...60,00 s adjustable 0 (> 200 ms)... 1000 s
Frequency	Measuring range Hysteresis Error Switching-delay Switching-back delay	$\begin{aligned} & 45,00 \ldots 65,00 \mathrm{~Hz} \\ & 0,05 \ldots 5.00 \mathrm{~Hz} \\ & \pm 0,05 \mathrm{~Hz} \pm 1 \text { Digit } \\ & \text { adjustable } 0,1 \ldots 99,9 \mathrm{~s} \\ & \text { adjustable } 0 \ldots 240 \mathrm{~s} \end{aligned}$
Vector-Shift	Mathod Measuring range Hysteresis Switching-delay Switching-back delay Delay at Us on	$\begin{aligned} & \text { 1- or 3-phase } \\ & 2.0 \ldots .20 .0^{\circ} \\ & 0,1{ }^{\circ} \\ & <50 \mathrm{~ms} \\ & \text { adjustable } 3 \ldots . .240 \mathrm{~s} \\ & \text { adjustable } 2 . .20 \mathrm{~s} \end{aligned}$
Test Conditions	Rated impulse voltage Overvoltage catagory Rated Insulation voltage Contamination level Isolation material group On-period Rated ambient temp. range Interference resistance Interference transmission	EN 60255 4000 V III AC 300 V 2 II 100 \% $-20^{\circ} \mathrm{C} \ldots+55^{\circ} \mathrm{C}$ EN $60068-2-1$ dry heat EN 61 000-6-2 EN 61 000-6-4
Housing	Design Dimensions (h x w x d) Protection housing Protection terminals Attachment Weight	$\vee 4$ $90 \times 70 \times 58 \mathrm{~mm}$, mounting height 66 mm $\text { IP } 30$ IP20 DIN-rail 35 mm or screws M4 app. 200 g

Voltage- and Frequency-Relay UFR1001E Grid- and Plant Protection according to VDE-AR-N 4105, bdew, ÖVE-standard, G59/3 and G83/2, DIN V VDE 0126-1-1

UFR1001E

Art.-No.: S222296

The grid protection device UFR1001E monitors voltage and frequency in plants for own generation of electri-
city. It fulfills the requirements of VDE-AR-N 4105 bdew-directive, G59/3, G83/2 and ÖVE/ÖNORM E 8001-4-712:2009 for generatores connected to the public grid. The UFR1001E is a dual-channel device and thus one-fault-proof. Input-circuit, A/D-converter, processor and output-relay are doubly present. The processors control each other. The function of the output-relays and of the connected switches can be monitored with feed-back contacts. At an alarm the device switches off and the reason is displayed with LEDs and signaled with transistor-outputs.

- Monitoring of under- and overvoltage $15-520 \mathrm{~V}$
- Measuring phase-neutral or phase-phase
- Monitoring of under- and overfrequency $45-65 \mathrm{~Hz}$
- Monitoring of quality of voltage (10-minutes-average)
- Monitoring of vector shift $2 . . .65^{\circ}$
- Monitoring of rate of change of frequency (ROCOF, df/dt) $0,100 \ldots 5,000 \mathrm{~Hz} / \mathrm{s}$
- One-fault-proof with monitoring of connected switches (defeatable), 2 automatic restarts at error
- Passive detection of insular grid acc. to ch. 6.5.3 and app. D2
- Support of synchronisation of generators
- Selftest
- Switching delay adjustable 0,05 ... 130 s
- Switching-back-delay adjustable $0 \ldots 999$ s
- Switching-back-delay at alarms $<3 \mathrm{~s}: 5 \mathrm{~s}$
- Preset values acc. to VDE-AR-N 4105 and bdew-directive
- Preset values acc. to G59/3 and G83/2 for Great Britain
- Preset values acc. to ÖVE standard for Austria
- Preset values acc. to VSE/EEA-CH 2014 for Switzerland
- Alarm-counter for 100 alarms with value, reason and elapsed time
- Recording of added time of alarms
- Input for standby with counter and recording of time
- Test-button and simulation with measuring of switching-times
- LEDs for alarms. Allocation of values and states of relays
- Sealing. All values can be read-out when sealed
- Easy installation and programming with 13 pre-set programs
- Outputs for reporting of alarms to superior control
- Supply-voltage AC/DC $24-270 \mathrm{~V}$
- Housing for DIN-rail-mount, 105 mm wide, mounting height 66 mm
- Medium voltage:
2×2 alarms for voltage and frequency (U>>, U>, U<, U<<, F>>, F>, F<, F<<<)

The limits are pre-set according to VDE-AR-N 4105. They can be changed if required and be protected with a code and/or a seal.
An alarm-counter stores the last 100 alarms with reason and elapsed time.

In addition the time the UFR1001E has interrupted the plant is recorded. All values can be read-out with the integrated display and give the operator valuable information about the availability of the plant. With a test-button the function of the connected switches can be tested and their switching-time can be measured. The simulation displays the complete switching-time of device plus connected switches.
The standby input allows a remote shutoff e.g. with a RCR. It can also be used to switch to an energy saving mode by a timer or a twilight switch.

Certificates:

Konformitätsnachweis NA-Schutz VDE-AR-N 4105 "Eigenerzeugungsanlagen am Niederspannungsnetz Konformitätsnachweis NA-Schutz bdew-Richtlinie "Eigenerzeugungsanlagen am Mittelspannungsnetz"
C... Certificate of compliance

DIN V VDE 0126-1-1
Certificate
ÖVE/ÖNORM E 8001-4-712:2009-12, Anhang A
ㄴT Certificate of compliance G59/3:2013
Certificate of compliance G83/2:2012
Certificate de conformité DIN V VDE 0126-1-1, VFR2013/VFR 2014

- Certificate of compliance

NRS 097-2-1:2010 ed1.0 South Africa

- approved Synergrid C10/C11
approved Energex RED STD00233
- accepted by Tepco
for Italy:
- CEI 0-21 relay SPI1021

Technical Data UFR1001E

Power supply	Rated supply voltage Us	AC/DC 24-270 V, 0/45... $65 \mathrm{~Hz},<5 \mathrm{VA}$ DC: $20,4 \ldots 297 \mathrm{~V}, \mathrm{AC}: 20,4 \ldots 297 \mathrm{~V}$
Relay output		2 change-over contacts see operating manual
Voltage	Measurement phase-phase	AC 15... 530 V (< 5 V display: 0)
	Setting range phase-phase	AC 15... 520 V
	Measuring voltage phase-neutral	AC 10...310 V (< 5 V display: 0)
	Setting range phase-neutral	AC 15... 300 V
	Measurement method	true RMS
	Hysteresis	adjustable1,0...99,9 V
	Measurement accuracy	with neutral: $\pm 0,6 \%$ of measured value without neutral: $\pm 0,8 \%$ of measured value
	Accuracy of display	$>100 \mathrm{~V}$: -1 digit (resolution 1 V)
		<100V: -1 digit (resolution 0,1 V)
	Measurement functions	3 -phase with / without neutral
	Switching-delay (dAL)	adjustable 0,05 ($\pm 15 \mathrm{~ms}$)...130,0 s
	Switching-back-delay (doF)	adjustable 0 (approx. 200 ms)... 1000 s
Frequency	Measurement range	$40 . .70 \mathrm{~Hz}$
	Setting range	45,00...65,00 Hz
	Hysteresis	0,05...10,00 Hz
	Measurement accuracy	$\pm 0,04 \mathrm{~Hz} \pm 1$ digit
	Switching delay (dAL)	adjustable 0,05 ($\pm 15 \mathrm{~ms}$)...130,0 s
	Switching-back-delay (doF)	adjustable 0 ($>200 \mathrm{~ms}$)... 999 s
Vector-Shift	Measurement range	0...90, 0°
	Setting range	2,0..65, 0°
	Switching-delay (dAL)	< 50 ms
	Switching-back-delay (doF)	adjustable $3 \ldots 240 \mathrm{~s}$
	Delay at Us on	adjustable $2 \ldots . .20 \mathrm{~s}$
ROCOF (df/dt)	Setting range	0,100 .. $5,000 \mathrm{~Hz} / \mathrm{s}, 4 \ldots 50$ cycles
Digital outputs insulated	Voltage I1	DC 4,5... 27 V
	Current Q1...Q5	max. 20 mA / output
Input Feed-back-contacts	Voltage Y0...Y1/2	DC 15... 35 V
	Switching time connected switches	adjustable 0,5...99,0 s
Test Conditions		EN 60255
	Rated impulse voltage	4000 V
	Overvoltage category	III
	Pollution degree	2
	Rated Insulation voltage Ui	300 V
	Operating time	100 \%
	Operating temperature	$-20^{\circ} \mathrm{C} . . .55{ }^{\circ} \mathrm{C}$
	Storage temperature	$-25^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}$
	Climatic conditions (IEC/EN 60721-3-3)	3 K 5 (except condesation and formation of ice)
	EMC - immunity	EN 61 000-6-2
	EMC - emission	EN 61 000-6-3
Housing		V6
	Dimensions ($\mathrm{h} \times \mathrm{wx} \mathrm{d}$)	$90 \times 105 \times 69 \mathrm{~mm}$, mounting height 66 mm
	Protection housing	IP30
	Protection terminals	IP20
	Attachment	DIN-rail 35 mm according to EN 60715 or screws M4
	Weight	ca. 250 g

Voltage- and Frequency-Relay SPI1021
 Grid- and Plant Protection according to CEI 0-21 (Italy) and DEWA-standard (Dubai), with integrated Vector-Shift-Relay

Art.-no: S222300

Declaration of confrmity with requirements of
CEI 0-21 Italy.

Dichiarazione die confomità alle prescrizioni alla Norma CEI 0-21 Italia..

Declaration of conformity with requirements of DEWA 2016 Dubai (DRRG).

The SPI1021 monitors voltage and frequency in plants for own generation of electricity. It fulfills the requirements of CEI 0-21 (Italy) and DEWA-standard (Dubai) Interface Protection (IP) according to DEWA Distributed Renewable Resources Generation programme (DRRG19, September 01, 2016).
6 selectable programs allow measuring 3 phases to neutral (4-wire mode), 3 phases phasephase (3-wire mode) and single phase to neutral (2-wire).
The SPI1021 can monitor all decentralized power, photovoltaic, wind or thermal plants, that feed in the low voltage and medium voltage grid. In applications with possible asymmetry >6 kVA, power balance has to be monitored extra.

With the integrated certified self test, the device can be used in plants < 6kVA.
In programs 1-3 (3= default), the limits are preset according to CEI 0-21. In programs 4-6 they are preset according to DEWAstandard. They can be changed if required and be protected with a code and/or a seal.
Acounter for alarms and standbys stores the last 100 events with reason and elapsed time. In addition the time the SPI1021 has interrupted the plant is recorded. All values can be displayed at the device and give the operator
valuable information about the availability of the plant. When the device has been installed, a self-test starts automatically. The self-test can be repeated when required. All values of the test are stored and can be read out at the display.

- Monitoring of under- and overvoltage $15-520 \mathrm{~V}$
- Measuring of 3 phase with or without neutral or single phase
- Monitoring of over- and underfrequency $45-65 \mathrm{~Hz}$
- Monitoring of quality of voltage (10-minutesaverage)
- RocoF "Rate of Change of Frequency" connectable
- Monitoring of vector-shift (connectible)
- Input IN2 for selection of frequency window
- Input In3 for selection of mode transitory or definitive
- Input Y0/Y1 for monitoring function of connected switch (automatic detection of nc/no)
- Relay K2 picks up (on time $<500 \mathrm{~ms}$) only at failure at switch connected to K1
- 2 restarts at switch-on error of connected switch
- Selftest with storing of values
- Switching delays adjustable 0,05... 130 s
- Switching-back-delays adjustable $0 . . .999$ s
- Different switching time according to type of alarm and selected mode
- Switch-on delay 300 s (adjustable)
- All parameters preset according to CEI 0-21
- Alarm counter for 100 alarms with value. Reason and elapsed time
- Recording of added time of alarms
- Input for standby (off time $<50 \mathrm{~ms}$) with counter and recording of time
- Simulation for testing
- Sealing, all parameters can be read out while sealed
- Easy installation and programming with 6 preset programs
- Supply-voltage AC/DC $24-270 \mathrm{~V}$
- Housing for DIN-rail-mount, 105 mm wide, mounting height 70 mm

Voltage Monitor for 3-Phase Networks Undervoltage

SW31K

Undervoltage monitor for threephase networks without N for monitoring on voltage failure. The voltage is being measured between phases and an artificial neutral point. At symmetrical decrease of the voltage to approx. 50% of the nominal value or in case of failure of a phase the integrated relay (1 change-over contact) releases with a delay of approx. 1s. With engines runningon on 2 phases, so much back voltage can be produced that the failure of a phase may be
not detected. The SW31K is available for measuring voltages AC 400 V and AC 690 V . As supply voltage in the standard version AC 230 V is needed.

Application:

- Monitoring of three-phase networks on loss of a phase
- monitoring of fuses

Order-numbers:
AC 400 V
S222272
AC 690 V
S222271
Special Versions upon request

Technical Data

Rated supply voltage Us other Voltages
Frequency
Relay-Output Type of Contact

Testing Conditions
Rated ambient Temp. Range
Hysteresis
Switching delay
Dimensions ($\mathrm{H} \times \mathrm{W} \times \mathrm{D}$) mm Protection Housing/Terminals Weight

AC $230 \mathrm{~V},+10 \ldots-15 \%,<3 \mathrm{~V}$
upon request
$50 / 60 \mathrm{~Hz}$
1 change-over contact (co)
Type 2 see "general technical information"
see "general technical information"
$-20^{\circ} \mathrm{C} . . .+55^{\circ} \mathrm{C}$
app. 10\% UNenn
app. 1 s
Design K: $75 \times 22 \times 115 \mathrm{~mm}$
IP $30 /$ IP 20
app. 135 g

Current recognition Relays for alternating current

General
ZIEHL current monitors for current recognition are electronic measuring relays for current monitoring in up to 8 measuring circuits. The current is captured by STWA1 type current transducers. Current monitors
in OR-evaluation (STW1K, STW12V and STW12), in AND-circuits (STW20K, STW20V) or for individual monitoring STW12 are available for different monitoring tasks. OR-circuit current monitors signal if at least one of several monitored lines is connected.
AND-circuit current monitors signal if not all lines are connected.

Summary

Type	STW1K	STW12V	STW12	STW20K	STW20V
Number of circuits	8	12	12	3	3
Connection via change-over STWA 1 or Current-Sensor S1	X	X +contact	X	X	X
Response value	1 A	0,5-5A	$10 \times 1 \mathrm{~A}$	$\begin{aligned} & 1 A \\ & 2 \times 1-5 A \end{aligned}$	1A
Relay output	1 U	1 U	1 U	2 U	2 U
Transistor outoput	-	-	12	-	-
Operating mode	operatingcurrent	operating-	operatingurrent	cl.-circuit current	cl.-circuit current current
Evaluation principle	OR	OR	single/	AND OR	AND
Current/voltage comparison	-	-	-	-	-

Function and

Features

In case of current flow through a connected STWA1 type transformer, a voltage is induced at the current monitor input. This voltage is captured, evaluated, and releases corresponding switching functions.
Due to the simple yes/no evaluation of current recognition and the permission of relatively high tolerances ($\pm 20 \%$) in the transformer and evaluation device, a wide variety of functions can be created with a good performance at moderate prices. The operating state of consumers outside the switch cabinet can be captured without a direct feedback of the consumer (costly and work-intensive wiring being unnecessary).

If the switching threshold is not reached due to low currents of less than 1 A, the monitored wire should be led multiple times through the transformer.

Current relays of type STW conform to VDE 0435 part 303, 4.8.2

Current-Relay STW1K

AC-Detection, OR-Evaluation of 1-8 Transformers

Technical Data

Current relay in OR evaluation with 8 inputs, designed e.g. for controlling of suction plants in the timber and plastics processing industry.
When there is an AC-current >1 A through one of up to 8 connected transformers STWA 1, the integrated relay (1co) picks up. When all currents are 0 , the relay releases with a delay of approx. 10s. This enables a run-after of the central suction.

- 8 inputs
- OR-evaluation
- relay picks up if at least 1 input is activated
- operating value approx. 1 A
- turn-off delay approx. 10 s
- not necessary inputs remain open
- options:
- switch-on delay 3 s
- without switch-off delay

Rated supply voltage Us

Transformer input
Overload cap.continous/max 10s Function
Switching point on
Switching point off
Switch-off delay
Switch-on delay
Output relay
Type of contact
Test conditions
Rated ambient temperature range

Dimensions (h x w x d)
Attachment
Protection housing / terminals Weight

Order-number:

AC 220-240 V
S225636
AC/DC 24 V
S225658

AC 220-240 V +10-15\%, < $3 \mathrm{VA}, 50 / 60 \mathrm{~Hz}$ AC/DC 24 V , DC $21-30 \mathrm{~V}, \mathrm{AC} 20,4-26,4 \mathrm{~Hz}$
1...8, type STWA, order-number S 225201

100 A / 300 A
OR-evaluation
$\leq A C 1 A$
$>$ AC 0,3 A
approx. 10 sec.
approx. $0,5 \mathrm{sec}$.
1 change-over contact (co)
type 2, see "general technical informations" see "general technical informations"
$-20^{\circ} \mathrm{C} \ldots+55^{\circ} \mathrm{C}$

Design K: $75 \times 22.5 \times 115$ [mm]
on 35 mm DIN rail according to DIN EN 60715
or with screws M4 (option)
IP 40 / IP 20
approx. 140 g

Current-Relay STW12V
 Current-Detection, OR-Evaluation, 12 Inputs, adjustable

STW12V

Current relays in OR evaluation with 12 inputs, designed e.g. for controlling of suction plants in the timber and plastics processing industry.
Recording of current is made with current transformers type STWA 1, current-sensors S 1 (DC also) or potential-free contacts.
When there is anAC-current higher than the set response value (setting range $0.5-5 \mathrm{~A}$) through at least one of the connected transformers, the integrated relay (1 NO) picks up. If all monitored circuits are switched off or the current falls below the set response value by approx. 0.3 A , the output relay releases after the set time delay (1-60).
Due to the adjustable response value, the user can permit lower currents without releasing switchings. Thus, for example, a machine can be switched on in order to adjust its electronic settings (low current via transformers). The STW will only switch on when the main motor has been put into operation (high current). Due to the adjustable switch off delay an easy adjustment of the follow-on is possible.

- Current monitoring of up to 12 currents
- Inputsforcurrenttransformers STWA 1, current-sensors S 1 or potential-free contacts
- Adjustable switching point 0.5-5 A

Supply voltage Us

Relay output
Type of contact
Test conditions
Rated amb. temperature range
Function
Measuring inputs
Overload cap./continous max 10s
Switching point
Tolerance
Switch-off delay
Switch-on delay
Dimensions (H x W x D)
Attachment
Protection housing/terminals
Weight

- Adjustable switch off delay (1-60 s)
- Plug-in terminals
- Universal supply-voltage AC/DC $24-240 \mathrm{~V}$
- Housing for mounting in switchgear cabinets or fuseboxes, 70 mm wide, mounting height 55 mm

Application:

ZIEHL current monitors in OR-circuits can be used particularly where dust, fumes and gases are generated by various electrical devices, and where these must be extracted by a central suction system. Due to the integrated delaytime the follow-on of the suction is controlled.

Order-number

AC/DC 24-240 V S225519

AC/DC 24-240 V, < 3 W , < $5 \mathrm{VA}, 50 / 60 \mathrm{~Hz}$ AC 20-264 V, DC 20,4-297 V

1 change-over contact (co)
type 2 see "general technical informations"
see "general technical informations"
$-20^{\circ} \mathrm{C} . . .+55^{\circ} \mathrm{C}$
OR-evaluation
12 x for current transmitters STWA 1, current-sensors
S 1 or potential-free contacts
100 A / 300 A
with STWA 1 adjustable, AC 0,5-5 A
$\pm 20 \%$
adjustable 1-60 s
app. 0,5 s
design V4: $90 \times 70 \times 58$ [mm], mounting height 55 mm on 35 mm DIN-rail according to EN 60715 or with screws M4
IP 30 / IP 20
app. 200 g

Current-Relay STW12
 AC-Detection, 12-channel, Single evaluation, OR-Circuit

The current relay STW12 monitors the current flow yes/no of up to 12 alternating-current circuits. If there is an AC-current of $\geq 1 \mathrm{~A}$ through a connected transformer STWA 1, the according output transistor switches and the yellow LED lights up.
All the OR inputs are linked at the same time. If a current is identified in at least one of the monitored current circuits, a relay (1 changeover contact) picks up.
The STW12 is installed at an open printed circuit board. The lower part can be used for snapfastening on a 35 mm DIN-rail or for screw fastening (option). The supply voltage is DC 24.
This voltage can be used at the same time for inquiry of the output transistors. When requesting the outputs in 2 groups in multiplex operation, only $8 \mathrm{I} / \mathrm{Os}$ of the PLC are needed.

Power supply Us

Function
Transformer input
Overload cap.continous/max 10s
Switching points E1, E2
Tolerance
Switching points E3...E12
Switch-off delay
Switch-on delay
Output relay
Type of contact
Open Collector
Testing conditions
rated ambient temperature range
Dimensions $\mathrm{H} \times \mathrm{B} \times \mathrm{T}$
Attachment
Protection housing / terminals Weight

- 12 inputs (for transformer STWA1)
- 2 of these inputs with adjustable switching threshold AC 0,5... 5 AA
- 12 outputs (Open Collector) max. DC $40 \mathrm{~V} / 40 \mathrm{~mA}$
- relay OR-linked (of all 12 inputs)
- LED displays (1/channel)
- Multiplex operation possible

Applications:
The current relay STW12 is used where AC-current yes/no has to be evaluated, however, the exact value of the current is not relevant. Examples are the control of machines in suction plants or monitoring of the mode of operation of loads (on, off or damaged). The STW12 is suitable in particular for being used in connection with a PLC.

Order-number
DC 20-30 V
S225127

DC 20-30 V, < 2 VA
12-channel single/OR
1...12, type STWA 1

100 A / 300 A
adjustable, AC 0,5... 5 A
$\pm 20 \%$
on $\leq A C 1 A$
off \geq AC 0,3 A
10 s .
approx. 0,5 s.
1 CO, $12 \times$ Open-Collector
type 2 see "general technical informations"
max. DC $40 \mathrm{~V} / 40 \mathrm{~mA}$
see "general technical informations"
$-20^{\circ} \mathrm{C} . .+55^{\circ} \mathrm{C}$
design V 6: $90 \times 105 \times 32$ [mm], 37-pole
on 35 mm DIN rail according to DIN EN 50022 or with screws M4 (option)
IP 30 / IP 20
approx. 135 g

Current-Relay STW20K
 AC-Detection, AND-Evaluation, 3 Transformers

STW20K

The current relay STW20K monitors the current in up to 3 lines with current transformers STWA1 (AND circuit). If there is a current in all 3 monitored lines, the relay (2 change-over contacts) picks up. If there is no current in at least one of the lines, the relay releases. The relay works in closed circuit current. When voltage is applied to the STW, the relay signals an alarm until the it has picked up.

Applications:
Identifies power failure with 1-or 3 -phase electrical consumers, e.g. with monitoring of heating elements or heating installations where a constant heating has to be guaranteed.
Afurther application is the identification of phase failure, monitoring of fuses, or triggering of operating hours counters.
If the switching threshold is not reached due to low currents of less than 1 A , the monitored wire should be led multiple times through the transformer. Not required inputs have to be connected to a occupied input.

Technical Data

Power supply Us

Output relay
Type of contact
Function
Transformer input
Overload cap.continous/max 10s
Switching point on
Switching point off
Tolerance
Switch-off delay
Switch-on delay
Testing conditions
rated ambient temperature range
Dimensions H x B x T
Protection housing / terminals
Weight

Features

- 3 current transformers STWA1
- AND-evaluation
- relay output 2 CO
- Switching point approx. AC 1 A
- LED-display for power on and alarm
- housing design K

Order-number
AC/DC 24-240 V S225121

AC/DC 24-240 V, 0/50/60 Hz, < $1 \mathrm{~W},<4 \mathrm{VA}$ (DC 20-297 V, AC 20-264 V)

2 CO
type 2 see "general technical informations"
3 channel/AND
1 to 3 , type STWA 1
100 A / 300 A
$\leq A C 1$ A
$\geq \mathrm{AC} 0,3 \mathrm{~A}$
$\pm 20 \%$
approx. 0,3 s
approx. $0,3 \mathrm{~ms}$
see "general technical informations"
$-20^{\circ} \mathrm{C} \ldots+55^{\circ} \mathrm{C}$
design K: $75 \times 22,5 \times 110$ [mm], 12-pol
IP 30 / IP 20
approx. 120 g

Current-Relay STW20V

AC-Detection, AND-Evaluation, 3 Transformers

STW20V

Art.-number:
AC/DC 24-240 V
S225124

The current relay STW20V monitors the current in up to 3 lines with current transformers STWA 1 (AND circuit). If there is a current in all 3 monitored lines, the relay (2 change-over contacts) picks up. If there is no current in at least one of the lines, the relay releases.
The relay works in closed circuit current. When voltage is applied to the STW, the relay signals an alarm until the it has picked up. This can be avoided if the device is constantly alive and monitoring is started by closing a contact at the Enable input. With a bridge at the Enable input, monitoring is automatically started when voltage is applied.

- 3 inputs (transformer STWA1)
- $3 \times$ current-sensor S1 (power-supply required)
- AND-evaluation
- output relay 2 CO
- switching point app. AC 1 A
- Enable-input
- storage of alarms or Auto-Reset
- LEDs power on and alarm
- housing V4 for mounting on DIN-rail or wall-mount

Applications:
Identifies power failure with 1- or 3-phase electrical consumers, e.g. with monitoring of heating elements or heating installations where a constant heating has to be guaranteed.
A further application is the identification of phase failure, monitoring of fuses, or triggering of operating hours counters.

Technical Data

Power supply Us
Function
Transformer input
Overload cap. continious/max.10s
Switching point on
Switching point off
Switch-off delay
Switch-on delay
Overload capacity
Output relay
Type of contact
Testing conditions
rated ambient temperature range
Dimensions H x B x T
Protection housing / terminals Weight

AC/DC 24-240 V, < 3 W , < 5 VA ,
(AC 20-264 V, DC 20,4-297 V) AND-evaluation
AND-evaluation
1 or 3, type STWA 1
100A / 300 A
$\leq \mathrm{AC} 1 \mathrm{~A}$
$\geq A C 0,3$ A
approx. 0,3 s.
approx. 0,3 s.
with STWA 1 unlimited
2 CO
type 2 see "general technical informations" see "general technical informations" $-20^{\circ} \mathrm{C} \ldots+55^{\circ} \mathrm{C}$
design V 4: $90 \times 70 \times 58[\mathrm{~mm}]$
IP 30 / IP 20
approx. 240 g

Current Transformer STWA1
 for recognition of AC-currents

Current Transformer STWA1

for monitoring current yes/no

Current-transformers STWA1H can be fixed on a 35 mm DIN-rail or with 2 screws.
The electrical connection is made via pluggable terminals.
The cables are led vertical through the transformer (right angle to 35 mm -rail). The available diameter is 11 mm .

A built-in LED lights up at currents > app. 2 A . Even short current pulses are visible.
ZIEHL current monitor type STW or an external LED can be conntected to the terminals. The built-in resistor protects the LED from overload.
The STWA 1 H can also be used to visualize currentflow in stand-alone mode, without connecting it to a current monitor.

Order-number S225506

Electronic Current-Transformers
 Current-Detection and Measuring-Transducers

General

Electronic current-transformers are compact and good-valued devices for the detection of a current in a wire.
Electronic current-transformers and current-sensors give a signal, when there is a current in a wire. At STWA1SEH and at currentsensor S1 the response-value
is adjustable. The evaluation of the signals usually is made with digital inputs of PLCs. STWA1LH can directly switch AC-signals up to $230 \mathrm{~V} / 0,5 \mathrm{~A}$.
Electronic current-transformers as measuring-transducers supply a signal 0-20 mA or 4-20 mA at the output that is proportional to the measured current. The outputsignal of the STWA1FH is a frequency, which can be evaluated with digital inputs of PLCs.

Overview

Function	Current-detection yes/no				Measuring-Transducer for AC-current			Current-
Type	Currentsensor S1	STWA1S	STWA1SH	STWA1SEH	STWA1AH	STWA2AH	STWA1FH	STWA1LH
Measuringinput	AC/DC	AC	AC	AC	AC	$\begin{aligned} & \text { AC 0-20/ } \\ & 0-100 \mathrm{~A} \end{aligned}$	AC 0-20 A	AC
Responsevalue	5-30 A	2 A	2 A	2-10 A	-	-	-	2-20 A
Output	Transistor +/-	Transistor	Transistor	Transistor	DC 0-20 mA	DC 4-20 mA	Transistor $0,5-20 \mathrm{~Hz}$	Triac 0,5 A
Housing	S 1	\varnothing ¢4,5 mm	H	H	H	H	H	H

Functions and

Properties

The current-sensorS1 is attached at the outside of the monitored wire, e.g. with a cable-fastener. With help of a hall-sensor it detects AC- and DC-currents in the wire. The response-value depends on the orientation of the sensor to the current (distance, angle). Neighboured wires can have an impact.

At Electronic current-transformers the monitored wire is pushed through the hole (11 mm) in the transformer. A built-in coil transforms the current into a measuringsignal. This signal is evaluated by the built-in electronics and transduced into the required output-signal. A supply-voltage is not necessary (except STWA1FH and current-sensor S1). The STWA2AH is loop-powered (4-20 mA).
Electronic current-transformers in housing type H can be fixed on an 35 mm DIN-rail or with 2 screws M4. The terminals are pluggable.

Current Sensor for AC- and DC-Currents Put-on sensor with transistor-output

Current Sensor S1 for AC- und DC-Ströme

The current sensor S1 records the current in a cable with a hallsensor. At currents of adjustable 5-30 A the transistor-outputs switch and report a current in the monitored cable.
The current sensor can be fixed with a cable fastener (apply to only 1 cable). Thus it can be mounted subsequently without disconnecting the cable.
As supply-voltage DC 24 V are required (e.g. ZIEHL-powersupply NG 4 V).

The current sensor can be connected to ZIEHL current-relaysfor current detection yes/ no ant to ZIEHL controls for dedusting plants. The connection to a digital input of a PLC also is possible.

Application:

Recording of welding currents (mounting at ground wire) for controlling dedusting plants in combination with ZIEHL-controls type STW.
Recording of the state of a consumer of electricity (on or off or defective).
In general the current sensor S 1 is used where the current flow is to be detected, with the exact value of the current either known from the power consumption of the connected consumer or does not matter for the evaluation.
For evaluation of measuring data

Supply voltage Us

Switching point at $\mathrm{Tu}=25^{\circ} \mathrm{C}$
Tolerance
Repeat accuracy
Temperature coefficient
Frequency of measured current
Overload cap. continious/< 1 min
Output 1
Output 2
On- / off-delay
Rated ambient temperature range
Dimensions (lxwxh)
Cable for connection
Attachmant
Weight
in more than 1 cable,
the outputs of several current sensors can be connected
in parallel (or-evaluation).

- switching point adjustable 5-30 A
- LED for current flow
- monitoring of AC and DC currents
- mounting without disconnection of cable possible
- 2 transistor-outputs, switching + and -
- direct connection to a PLC possible
- connection to current-relays ZIEHL type STW
- sturdy, sealed execution
- overload capacity: unlimited
- test-voltage $2,5 \mathrm{kV}$

Order-number:
Current Sensor S1, 5-30 A adjustable
S225694

DC $24 \mathrm{~V} \pm 20 \%, 12 \mathrm{~mA}$
adjustable AC/DC 5-30 A
$\pm 20 \%$
$\pm 2 \%$
typical $< \pm 0,2 \mathrm{~A} / \mathrm{K}, \max . \pm 0,45 \mathrm{~A} / \mathrm{K}$
$0 / 10$... 400 Hz
500 A / 1000 A
DC 24 V , + switching, max. 10 mA
DC 24 V , - switching, max. 10 mA
app. 300 ms
$0 . .55^{\circ} \mathrm{C}$
$75 \times 16,5 \times 10 \mathrm{~mm}$
app. $2 \mathrm{~m}, 4 \times 0,34 \mathrm{~mm} 2$
e.g. with cable fastener (not included)
app. 150 g (cable included)

AC-Electronic Current Transformer STWA1S with transistor-output

STWA1S

Electronic current transformer
with fixed switching-point

The STWA1S has an integrated electronic with transistor-output. The switching point is 2 A . Above app. 2 A the output transistor is switched on (LOW), below app. 1.5 A it is off (HIGH).

The conductor is simply pushed through the transformer.Multiple loops reduce the switching point correspondingly, for instance to 0.5 A with four loops. A supply voltage is not required.

Application: The STWA1S is used where current flow is to be detected, with the exact value of the current either known from the power consumption of the connected consumer or does not

Switching point at $\mathrm{Tu}=25^{\circ} \mathrm{C}$
Hysteresis
Repeat accuracy
Temperature dependence
Overload cap. continous / 10s
Output voltage/current max.
Voltage drop (ON)
Leak current (OFF)
Switch-on /switch-off delay
nominal frequency/ operating
range
error
rated ambient temperature range

Housing
Dimensions ($\varnothing \times \mathrm{H}$)
Diameter for conductor
Weight
matter for the evaluation.
Forsimultaneous evaluation of the current flow in several conductors the STWA1S device can be connected in series (AND circuit, pay attention to the voltage drop) or in parallel (OR circuit, pay attention to the leak current).

- isolated transistor-output max. DC $40 \mathrm{~V} / 40 \mathrm{~mA}$
- output can be directly connected to the digital input of a PLC
- integrated diode for reverse voltage protection
- 2-wire-connection, 1 m
- no supply voltage required
- transformer and electronic unit enapsulated in a climate-proof housing
- plug-in current transformer ($\varnothing 11 \mathrm{~mm}$)
- max. overload 100 A continously, 300 A / 10 s

Order-number
S225195

AC 2 A +20/-40\%
approx. 6\%
± 5 \%
$0 . . .55^{\circ} \mathrm{C}:<0,5 \% / \mathrm{K}\left(-20 . . .0^{\circ} \mathrm{C}:<2,5 \% / \mathrm{K}\right)$
100 A / 300 A
DC $40 \mathrm{~V} / 40 \mathrm{~mA}$
max. 3 V
max. 0,6 mA
app. $50 / 200 \mathrm{~ms}$
$50 \mathrm{~Hz} / 30 . . .70 \mathrm{~Hz}$
$\leq 1 \% / \mathrm{Hz}$
$-20 . . .+55^{\circ} \mathrm{C}$

Design S
$34,5 \times 27 \mathrm{~mm}$
11 mm
app. 60 g

Dimension illustrations

Electronic current transformer STWA1S

AC-Electronic Current Transformer STWA1SH

2 A, with transistor-output

STWA1SH
Electronic Current Transformer with
fixed switching point

The STWA1SH has an integrated electronic with transistor-output. The switching point is 2 A . Above app. 2 A the output transistor is switched on below app. 1.5 A it is off.
The conductor is simply pushed through the transformer.Multiple loops reduce the switching point correspondingly, for instance to 0.5 A with four loops. A supply voltage is not required.

Application: The STWA1SH is used where current flow is to be detected, with the exact value of the current either known from the power consumption of the connected consumer or does not

Switching point at $\mathrm{Tu}=25^{\circ} \mathrm{C}$ Hysteresis
Repeat accuracy
Temperature dependence
Overload cap. continous / 10s
Output voltage/current max.
Voltage drop (ON)
Leak current (OFF)
Switch-on /switch-off delay
Nominal frequency
operating range
error
Rated ambient temperature range

Housing
Dimensions (h x w x d) Diameter for conductor Weight

matter for the evaluation.
For simultaneous evaluation of the current flow in several conductors the STWA 1 S device can be connected in series (AND circuit, pay attention to the voltage drop) or in parallel (OR circuit, pay attention to the leak current).

- isolated transistor-output max. DC $40 \mathrm{~V} / 40 \mathrm{~mA}$
- output can be directly connected to the digital input of a PLC
- integrated diode for reverse voltage protection
- electrical connection via screwless pluggable terminals
- no supply voltage required
- DIN-rail-mount or with screws
- plug-in current transformer ($\varnothing 11 \mathrm{~mm}$)
- max. overload 100 A continously, 300 A / 10 s

Order-number
S225550

AC 2 A $+20 /-40 \%$
approx. 6\%
$\pm 5 \%$
$0 \ldots 55^{\circ} \mathrm{C}:<0,5 \% / \mathrm{K}\left(-20 \ldots 0^{\circ} \mathrm{C}:<2,5 \% / \mathrm{K}\right)$
100 A / 300 A
DC $40 \mathrm{~V} / 40 \mathrm{~mA}$ max. 3 V max. 0,6 mA app. $50 / 200 \mathrm{~ms}$

50 Hz
$30 . . .70 \mathrm{~Hz}$
 $\leq 1 \% / \mathrm{Hz}$
$-20 \ldots+55^{\circ} \mathrm{C}$

Design H
$50 \times 36 \times 56 \mathrm{~mm}$ 11 mm
 app. 90 g

AC-Electronic Current Transformer STWA1SEH

adjustable 2... 10 A , with transistor-output

The STWA1SEH has an integrated electronic with transistoroutput.
The switching point is adjustable 2-10A.Above switching-point the output transistor is switched on, below it is off.
The conductor is simply pushed through the transformer.Multiple loops reduce the switching point correspondingly, for instance to $0.5-2,5$ A with four loops. A supply voltage is not required.
For monitoring of higher currents, the STWA1SEH is simply looped into the secondary current of big current transformers.

Switching point at $\mathrm{Tu}=25^{\circ} \mathrm{C}$
Hyseteresis
Repeat accuracy
Temperature dependence
Overload cap. continous / 10s
Output voltage/current max.
Voltage drop (ON)
Leak current (OFF)
Switch-on /switch-off delay
nominal frequency
operating range
error
rated ambient temperature range

Housing

Dimensions (h x w x d)
Diameter for conductor
Weight

Dimension illustrations

Application: The STWA1SE is used where AC current flow is to be detected in a conductor, e.g. to give a warning if a defined current value is exceeded or not reached, or to switch off a machine or to simply report the current flow.

- adjustable switching limit $2 . . .10 \mathrm{~A}$
- isolated transistor-output max. DC $40 \mathrm{~V} / 40 \mathrm{~mA}$
- output can be directly connected to the digital input of a PLC
- LED for display state of output
- integrated diode for reverse voltage protection
- electrical connection via screwless pluggable terminals
- no supply voltage required
- plug-in current transformer ($\varnothing 11 \mathrm{~mm}$)
- max. overload 100 A continously, 300 A / 10 s

Order-number
S225550

AC $2 \ldots . .10 \mathrm{~A} \pm 25 \%$
5... 30%
± 2 \%
< 0,06\%/K
$100 \mathrm{~A} / 300 \mathrm{~A}$
DC $40 \mathrm{~V} / 40 \mathrm{~mA}$
max. $1,5 \mathrm{~V}$
max. 0,6 mA
$0,2 \ldots 2 \mathrm{~s} / \leq 0,3 \mathrm{~s}$

50 Hz
$30 . . .70 \mathrm{~Hz}$
$\leq 3 \% / \mathrm{Hz}$
$-20 \ldots+50^{\circ} \mathrm{C}$

Design H
$50 \times 36 \times 56 \mathrm{~mm}$

11 mm
app. 90 g

[^2]
AC-Electronic Current Transducer STWA1AH with analog output

STWA1AH

Electronic current transformer
AC 0... 15 A - DC 0... 20 mA

The STWA1AH is a measuring transducer for AC currents $0 . .15$ A. Multiple loops of the conductor through the transformer reduces the measuring range correspondingly (for instance to $0 . . .5 \mathrm{~A}$ with three loops).
For the monitoring of currents of any level, the STWA1AH is simply looped into the secondary circuit of a large transformer with secondary 5 A (cable three times through the STWA1AH). Consequently, the output is proportional to the primary current of the transformer, e.g. 0... 100 A for a transformer with 100/5 A.
The analog output is isolated. The load should be $50 . . .300 \Omega$.
Monitoring range
Analog output
Adjustment time
Error (from 10\% / Inom)

Error with other load
Temperature coefficient
Ripple at 50 Hz
Nominal frequency
Operating range
Error

Overload cap. continous / 10s
Rated ambient temperature range

Housing
Dimensions (h x w x d)
Diameter for conductor Weight

Application: The STWA1AH makes it possible to monitor the value of an AC current. The output signal can be evaluated or displayed with components with analog inputs, e.g. ZIEHL TR210, STW1000/V2 or MINIPAN ${ }^{\circledR}$.

- current-proportional analog output DC $0 . . .20 \mathrm{~mA}=$ AC 0... 15 A (isolated)
- electrical connection via screwless pluggable terminals
- no supply voltage required
- DIN-rail-mount or with screws
- plug-in current transformer ($\varnothing 11 \mathrm{~mm}$)
- max. overload 100 A continously, 300 A / 10 s
- plug-in current transformer, easy assembly

Order-number
S225579

AC 0-15A
DC 0-20 mA
$<0,5$ s.
$<3 \%$ from FS (at 100Ω), $<5 \% 50 \ldots 200 \Omega$
<7\% .. 300Ω
$+5 \% / 100 \Omega$, max. 500Ω
< 0,06\%/K
$<2,5 \%$ at $300 \Omega,<4,5 \%$ at $100 \Omega,<7,5 \%$ at 50Ω
50 Hz
$30 . . .400 \mathrm{~Hz}$
$\leq 0,2 \% / \mathrm{Hz}$

100 A / 300 A
$0 . .55^{\circ} \mathrm{C}$

Design H

$42 \times 36 \times 56 \mathrm{~mm}$
11 mm
app. 90 g

1 Housing
2 Clip for DIN-rail (removeable)
Terminal (pluggable)
4 Wall-mounting (M4)

AC-Electronic Current Transducer STWA2AH with analog output

Art.-no: S225580

The STWA2AH is a measuring transducerforAC currents 0... 100 A, divided in 2 ranges 0...20A and $0 . . .100 \mathrm{~A}$. Multiple loops of the conductor through the transformer reduces the measuring range correspondingly (for instance to $0 . .5$ A with four loops).
For the monitoring of currents of any level, the STWA2AH is simply looped into the secondary circuit of a large transformer with secondary 5 A (cable four times through the STWA2AH). Consequently, the output is proportional to the primary current of the transformer, e.g. 0... 100
Supply voltage
Monitoring ranges
Analog output
Adjustment time
Error (of scale, above 10\%/
Irated)
Temperature coefficient
Nominal frequency
Operating range
Error
Overload cap. continous / 10s
Rated ambient temperature
range

A for a transformer with 100/5 A.
The analog output is isolated. The STWA 2 AH is in 2-wire execution and needs a supply-voltage DC $9 . . .30 \mathrm{~V}$.

Application: The STWA"AH makes it possible to monitor the value of an AC current. The output signal can be evaluated or displayed with components with analog inputs, e.g. ZIEHL TR210, STW1000V2 or MINIPAN ${ }^{\text {® }}$.

- current-proportional analog output DC $4 \ldots 20 \mathrm{~mA}=$ AC $0 . . .20$ / 0... 100 A (isolated)
- electrical connection via screwless pluggable terminals
- supply voltage DC $9 \ldots 30 \mathrm{~V}$ (2-wire)
- DIN-rail-mount or with screws
- plug-in current transformer ($\varnothing 11 \mathrm{~mm}$)
- max. overload 100 A continously, $300 \mathrm{~A} / 10 \mathrm{~s}$

DC 9... 30 V (2-wire), depending on load
AC 0-20 / 0... 100 A
DC 4-20 mA (max. 32 mA)
$<0,5$ s.
<5\%
$0 \ldots . .55^{\circ} \mathrm{C}:<0,06 \% / \mathrm{K}\left(-20 \ldots 0^{\circ} \mathrm{C}:<0,5 \% / \mathrm{K}\right)$
$50 / 60 \mathrm{~Hz}$
$30 . . .400 \mathrm{~Hz}$
$\leq 0,1 \% / \mathrm{Hz}(30-50 \mathrm{~Hz})$
$\leq 0,05 \% / \mathrm{Hz}(60-400 \mathrm{~Hz})$
63 A / 360 A
$-20 \ldots+55^{\circ} \mathrm{C}$

Design H
$42 \times 36 \times 56 \mathrm{~mm}$
11 mm
app. 90 g

[^3]
AC-Electronic Current Tranducer STWA1FH

 with frequency output

 with frequency output}

STWA1FH

Electronic Current Transformer with current proportional frequency output 0... 20 A - 0,5... 20 Hz

The STWA1FH provides a frequency output with $0.5 \ldots 20 \mathrm{~Hz}$ which corresponds to a current flow of AC 0-20 A through the transformer. Multiple loops of the conductor through the transformer reduce the current range correspondingly (e.g. with fourfold looping-through 0-5 A correspond to $0.5 \ldots 20 \mathrm{~Hz}$).
For the monitoring of high currents, the STWA1FH is simply looped in the secondary circuit of a large current transformer. Consequently, the frequency output is proportional to the primary current of the transformer, e.g. 0-100 A for a transformer with 100/5 A (cable four times through the STWA1F).
The offset of 0.5 Hz at the beginning of the transducing range is for technical reasons. During evaluation, it can be taken into account.

Power supply Us
Monitoring range
Output
Switching voltage
Switching current min/max
Adjustment time
Error (of scale, above 10\%/
Irated)
Temperature coefficient
Nominal frequency/operating
range
Error

Overload capacity cont./10 s
Testing voltage to supply voltage max. ambient temperature

Housing

Application: The STWA1FH enables moderately priced detection of the value of an AC-current with a DIGITAL INPUT of a PLC. Costly analogue inputs are no longer necessary.
The STWA1FH is particularly suitable to evaluate the current in electric motors in machines of i.e. saws. The feed can be regulated dependent from the load of the motor of the saw.

- current-proportional frequency output $0.5-20 \mathrm{~Hz}$ $=A C 0-20 \mathrm{~A}$
- output isolated, max DC $30 \mathrm{~V} / 30 \mathrm{~mA}$
- output frequency limited to 30 Hz
- output can be connected to the digital input of a PLC incorporated reverse voltage protection diode
- electrical connection via screwless pluggable ter-
- minals
supply voltage DC $10 . . .30 \mathrm{~V}$
- DIN-rail-mount or with screws
- plug-in current transformer ($\varnothing 11 \mathrm{~mm}$)

Options: - currents up to 60 A

- - other frequencies

Order-number S 225560

DC 10-30V
AC 0... 20 A
0,5... 20 Hz
max. DC 30 V
DC $1 / 30 \mathrm{~mA}$
$<0,5$ s.
$\leq 3 \%$
< 0,06\%/K
$50 \mathrm{~Hz} / 50 \ldots . .400 \mathrm{~Hz}$
$\leq 0,2 \% / \mathrm{Hz}$
In $+5 \% / 200 \mathrm{~A}$
500 V
$0 . .55^{\circ} \mathrm{C}$
Design H
$42 \times 36 \times 56 \mathrm{~mm}$
11 mm
app. 90 g

Housing
2 Clip for DIN-rail (removeable)
3 Terminal (pluggable)
4 Wall-mounting (M4)

AC-Electronic Current Transformer STWA1LH

with output AC $230 \mathrm{~V} / 0,35 \mathrm{~A}$

The electronic current transformer STWA1LH monitors alternating currents $2 \ldots 20 \mathrm{~A}$. For lower currents, the monitored wire can be led multiple times through the transformer. Used in the secondary circuit of transformers (e.g. $100 / 5 \mathrm{~A}$), it is possible to monitor higher currents.
The STWA1LH directly switches alternating voltage up to AC 230 V/0,35 A.

- Control of ventilations or suction plants
- Control of valves at suction plants in the woodworking industry

Features

- Monitoring of alternating current up to 20 A
- Response value adjustable 2 ... 20 A
- Two-wire contact (voltage supply through output)
- Operating voltage AC $24 \ldots 230 \mathrm{~V}$
- Transformer, ø 11 mm
- Space-saving, easy mounting
- Potential separation between monitored current circuit and switch output

Order-numbers:
S225591

Automatic switching-on of additional consumenrs

Technical Data STWA1LH

Operating voltage
Operating voltage tolerance Frequency
Overvoltage category

AC $24 \ldots 240 \mathrm{~V}$
± 10 \%
$50 / 60 \mathrm{~Hz}$
III (EC 60 664)

Maximum output current Minimum output current Voltage drop
Leakage current
Switch
Electomagnetic compatibility
Adjustment accuracy
Repeat accuray
Hysteresis
Release time

AC 2... 20 A
For lower currents, the monitored wire can be led multiple times through the transformer AC 40 A
AC 100 A for 60 s

AC 350 mA
ca. 10 mA
$\leq \mathrm{AC} 8 \mathrm{~V}$
$\leq \mathrm{AC} 2 \mathrm{~mA}$ at 230 V
solid state
EN 61000-6-2 and EN 61 000-6-4
± 15 \%
± 5 \%
ca. 10 \% of value
On $=<100 \mathrm{~ms} . . .800 \mathrm{~ms}$
Off $=$ app. $1,5 \mathrm{~s}$

Design dimensions $(H \times W \times D)$ Fitting position	housing H $50 \times 36 \times 56 \mathrm{~mm}$ any
max. ambient temperature range	$0 \ldots .55^{\circ} \mathrm{C}$
storage temperature	$-20 \ldots+70^{\circ} \mathrm{C}$
Attachment	35 mm standard rails conform to EN 50022 or
	M 4 screws
Protection	IP 20
Weight	approx. 90 g

Current Monitors Type STW
 adjustable

General

Funktion und

Eigenschaften

The STW is an electronic current monitoring relay. Depending on the model, one or more consumers can be monitored using only one instrument.

According to the application, the current-relays are connected into the current-line to the load directly or via a current-transformer. The built-in relay picks up after supply-

Specific applications, where current monitors can be used are:

- obstacle lights
- stone- and woodworking machines
- chemical plants
- machine tools of all kinds
and wherever it is necessary to monitor currents for over- or undercurrent.
voltage is switched on. It releases, when the limit is exceeded and the switching delay has run down.

Summary

Current Monitor	DC	DC	AC/DC	AC	AC	AC
Type	STW1000V2	TR210	STW1000	STW200	RCM1000V	COSFI100V
Connection current direct	X	X	X	X	-	x
External shunt	-	-	X	-	-	-
External transformer	-	-	X	-	STWA3D	x
Number of circuits	1	1	1	1	1	1
Response values adjustable	$\begin{aligned} & 0 / 4-20 \mathrm{~mA} \\ & 0 / 2-10 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0-20 \mathrm{~mA} \\ & 4-20 \mathrm{~mA} \\ & 0-10 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0,1-1 A \\ & 0,5-5 A \\ & 1-10 A \\ & 6-60 \mathrm{mV} \end{aligned}$	$\begin{aligned} & 12-120 \mathrm{~mA} \\ & 0,1-1 \mathrm{~A} \end{aligned}$	0,01-9,99 A	$-10,0-+10,0 \mathrm{~A}$
Analog output	-	X	-	-	-	-
Housing	V2	V4	V4	V4	V4	V4

DC-Limit Value Switch Type STW1000V2

DC 0/4-20 mA, 0/2-10 V

STW1000V2

Technical Data

ZIEHLcurrent-relaysSTW1000V2 monitor standard-signals from measuring transducers if a limit is exceeded. Formonitoring of more than 1 signal, multiple relays can be connected in series (current) or in parallel (voltage).
Measuring inputs for 0/4-20 mA and $0-10 \mathrm{~V}$, adjustable hysteresis and switching delay and the choice between operating- and closed-current mode of the relay make it a very universal limit switch.

- Measuring inputs 0-20 mA / 0-10 V, switchable to 4-20 mA / 2-10 V
- Limit adjustable 0-100 \%
- Hysteresis adjustable 5-30 \%
- Start-up delay adjustable 0,1 ... 10 s
- Switching delay adjustable 0,1 ... 10 s
- Output-relay 1 changeovercontact (co)
- Operating- or closed-circuitmode for relay selectable with bridge
- LEDs for display state of operation
- Universal supply-voltage AC/ DC 24-240 V
- Housing for mounting in switchgear cabinets or fuseboxes, 35 mm wide

Supply voltage Us

Relay output
Type of contact
Test conditions
Function
Measuring signals

Switching point
Hysteresis
Error of setting
Repeat error
Temperature-dependence
Start-up-delay dEnable
Switching delay dAL
Rated ambient temp.range
Dimensions (H x W x D)
Attachment
Protection housing/terminals Weight

Applications:

Monitoring of different values in combination with measuring transducers, e.g. in machines and controls.

Order-number
AC/DC 24-240 V:
S225677

AC/DC 24-240 V, 0/50/60 Hz, < 2W, < 3VA
(DC 20,4-297 V, AC 20-264 V)
1 change-over contact (co)
type 3 see "general technical informations" see "general technical informations"

Maximum limit switch
DC 0/4 ... $20 \mathrm{~mA}, 20 \Omega$
DC $0 . . .10 \mathrm{~V}, 63 \mathrm{k} \Omega$
adjustable 0...100\%
adjustable 5 ... 30% of set limit
$<10 \%$ of fullscale
< 0,2\%
<0,05 \%/K
adjustable $0,1 \ldots 10 \mathrm{sec}$.
adjustable 0,1... 10 sec.
$-20^{\circ} \mathrm{C} \ldots+55^{\circ} \mathrm{C}$
design V2: $90 \times 35 \times 58$ [mm], mounting height 55 mm on 35 mm DIN-rail according to EN 60715 or with screws M4
IP 30 / IP 20
approx. 130 g

DC-Universal-Limit Value Switch TR210

for 2 Temperature-sensors or 0/4-20 mA, 0-10 V, 2 Limits, Analog output

TR210

Function

The limit value switch TR210 monitors up to 2 measuring inputs for Pt100 (RTD), Pt1000, thermocouples, or standard-signals 0/4-20 mA, 0-10 V.
The signals are monitored for up to 4 limits. The value of one or of both inputs can be read out at an analog output.

- Measuring and monitoring range $-170 \ldots+1820^{\circ} \mathrm{C}$
- resolution $0,1^{\circ} \mathrm{C}$ (to $999.9^{\circ} \mathrm{C}$)
- Analog output (scaleable) for 1 input, min./max. of 2 inputs or difference of 2 sensors (no isolation between inputs and output)
- 2 relay outputs
- Shifting of day/night (selectable with contact at terminals Y1/Y2)
- Universal power supply AC/ DC 24-240 V
- Easy setting with 3 buttons and preset programs
- Storing of min- and maxvalues of inputs
- Code-lock against manipulation of settings
- Terminals pluggable

2 Measuring-Inputs:

- Resistance-sensors Pt100 (RTD), Pt1000, KTY83/84 in 2- or 3-wire-connection
- Thermocouples types B, E, J, K, L, N, R, S or T
- different sensors at both inputs possible
- Standard-signals 0/4-20 mA, 0-10 V (scaleable)

Displays:

- 4-digit for measuring value
- 2 LEDs for state of relays
- 3 LEDs sensor/difference
- 2 LEDs day/night

Application:

The TR210 is very versatile and can thus be used in many applications. Nevertheless multiple preset programs allow an easy setting.
It can be used as a limit switch or as a controller for 2 limits (with day/night shift up to 4 limits).
As a measuring transducer it can convert signals from the temperature-sensors to standard-signals or change the scaling of standard-signals. The user can also select, if minimum or maximum of 2 signals or the difference of 2 signals is connected to the analog output. For more applications see basic programs.

Switching-Functions:

- 2 relays (co-contacts)
- 2-4 limits
- Warmest/coldest sensor switches relay
- Programmable for every relay:
- hysteresis (+ or - = MIN- or MAX-function) -199.9...999.9 s
- autoreset or electronic reclosing lock
- elay-time for switching and switching back 0... 9999 s
- operating- or closed current-mode
- cyclic check of function
- Monitoring of difference in temperature
- Preset basic programs

Order-number: T224071

Basic Programs

Program 1:
1 Temperature-sensor,

2 Limits

Application: Monitoring of a temperature for 2 limits, e.g. overtemperature with warning and switchjing off or monitoring of a temperature-range ($\mathrm{min} / \mathrm{max}$).

Program 2:

2 Temperature-Sensors,
1 Limit for each Sensor
Application: Monitoring of 2 temperatures for 1 limit each, e.g. over.temperature or as double electronic controller.

Program 3:
1 Temperature-Sensor,
2 Limits each day/night
Application: Controlling of a temperature with first limit, different for day and night.
Monitoring of the same temperature with second limit, different for day and night.

Program 4:
2 Temperature-Sensors, each 1 Limit for day/night
Application: Monitoring or controlling of 2 temperatures for 2 limits, depending on operation mode, e.g. controlling of 2 circulation pumps (day/night) or of processes (active/stand-by).

Program 5:

2 Temperature-Sensores for monitoring of differences in temperature, 2 Limits
Application: Regulation or monitoring of the difference of 2 measuring-points for 2 limits, e.g. circulation pumps in solar systems.

Technical Data

Program 6:

1 Standard-Signal 0/4-20 mA or 0-10 V, 2 Limits
Display can be scaled, e.g. measuring input 4-20 mA = display 0... $1200 \mathrm{I} / \mathrm{h}$.
Application: Monitoring of signals from a measuring transducer for 2 limits, e.g. over- or under- exceeding of limits with pre-alarm and alarm or monitoring of a signalrange ($\mathrm{min} / \mathrm{max}$) and/or as measuring-transducer.
In combination with any measuring-transducers, signals like pressure, volume-flow, pH -value, ... can be monitored.

Program 7:

2 Standard-Signals 0/4-20 mA or 0-10 V,

1 Limit each

Display can be scaled, e.g. measuring input 4-20 mA = display 0... $1200 \mathrm{I} / \mathrm{h}$.
Application: Monitoring of signals from 2 measuring transducers, each for 1 limit, e.g. over- or under- exceeding of a limit as double electronic controller.

Program 8:

2 Standard-Signals 0/4-20 mA or 0-10 V for monitoring of differences of signals
Application: Regulation or monitoring of the difference of 2 analog signals for 2 limits, e.g. levels of liquids.

Program 9:

22 Temperature-Sensors, 2 shared Limits

Application: Coldest (MIN) or warmest (MAX) sensor switches relay. Monitoring of 2 bearings for pre-alarm and alarm.

Application as Measuring-Transducer:
At programs with 1 measuring-input the output can be scaled for this input, e.g. $0 . . .200 .0=4-20 \mathrm{~mA}$.
At programs with 2 measuring-inputs the output can be scaled for 1 input or min- or max- value of both inputs.
At programs for measuring of differences output can be scaled for 1 signal or for the difference input 2 minus input or for min- or max- value of both inputs.
Thus the TR 210 can be used as limit value switch and/ ormeasuring-transducersimultaneously. The measured values ca be forwarded to e.g. a remote display or a superior control.

AC/DC 24-240V, <3W, <5VA
(AC 20-264 V, DC 20,4-297 V)
Pt100, Pt1000 according to EN 60751
Thermocouples types B, E, J, K, L, N, R, S, according to EN 60 584, DIN 43710
0/4-20 mA (22 2), 0-10 V (13 k Ω)
$<2,5 \mathrm{~s}$ to 5 s , depending on speed of change of signal 0/4-20 mA, max. $500 \Omega .0-10 \mathrm{~V}$, max. 10 mA (without isolation to inputs)
type 3, see "general technical informations" 2×1 co- (change-over) contact
see "general technical informations"
$-20 . . .+60^{\circ} \mathrm{C}$
design V4: 90x70x58 [mm], mounting height 55 mm IP 30 / IP 20 (terminals pluggable)
app. 200 g
on 35 mm DIN-rail or with screws M 4

Current Relay for DC- and AC-currents AC/DC 0,1-10 A, 60 mV with external shunt

STW1000

ZIEHL current-relays STW1000 have 4 measuring-ranges. They monitor most of the common AC- and DC-currents for over- or undercurrent.
Currents up to 10 A can be connected directly to the STW. For higher currents external transformers (to inputs $1 / 5 \mathrm{~A}$) or Shunts (input 60 mV) can be connected.

- Measuring inputs $1 \mathrm{~A}, 5 \mathrm{~A}, 10$ A, direct or via transformer
- Measuring input 60 mV for ext. Shunt
- Automatic detection of $\mathrm{AC} /$ DC
- Monitoring of over- or undercurrent
- Adjustable range $10 \ldots 100 \%$ In
- Hysteresis adjustable 5...50\%
- Start-up delay 1 ... 20 s (input enable)
- Switching delay $0,1 \ldots 10$ s for fading of short peaks
- Output-relay 2 changeovercontacts (co)
- Operating- or closed-circuitmode for relays selectable with bridge
supply voltageUs
relay output type of contact test conditions
function
frequency of measured current internal resistance
overload capacity/continously max. 10s
switching point
hysteresis
error of setting
repeat error
temperature-dependence
start-up-delay denable
switching delay dal
rated ambient temp. range
dimensions ($\mathrm{h} \times \mathrm{w} \times \mathrm{d}$)
attachment
protection housing/terminals weight
- Universal supply-voltage AC/DC 24-240 V
- Interlocked switching selectable with bridge
- LEDs for display state of relay
- Housing for mounting in switchgear cabinets or fuse boxes, 70 mm wide, mounting height 55 mm
- option: other supply voltages

Order-number
AC/DC 24-240 V
S225684

AC/DC 24-240 V, <3W, <5VA
(AC 20-264 V, DC 20,4... 297 V)
2 change-over contacts
type 2 see "general technical informations" siehe "general technical informations"

Over- or undercurrent, DC orAC (1-phase)
$0 / 40 \ldots 400 \mathrm{~Hz}$
$60 \mathrm{mV}: 40 \mathrm{k} \Omega, 1 \mathrm{~A}: 0,1 \Omega, 5 \mathrm{~A}: 20 \mathrm{~m} \Omega, 10 \mathrm{~A}: 10 \mathrm{~m} \Omega$
$60 \mathrm{mV}: 10 \mathrm{~V}, 1 \mathrm{~A}: 2 \mathrm{~A}, 5 \mathrm{~A}: 7,5 \mathrm{~A}, 10 \mathrm{~A}: 11 \mathrm{~A}$
$60 \mathrm{mV}: 10 \mathrm{~V}, 1 \mathrm{~A}: 5 \mathrm{~A}, 5 \mathrm{~A}: 15 \mathrm{~A}, 10 \mathrm{~A}: 20 \mathrm{~A}$
adjustable 10... 100% In
adjustable $5 . . .50 \%$ of switching point
< 10\%
$\pm 0,2 \%$
<0,05 \%/K
adjustable1... 20 sec .
adjustable $0,1 \ldots 10 \mathrm{sec}$.
$-20^{\circ} \mathrm{C} \ldots+55^{\circ} \mathrm{C}$
design V4: $90 \times 70 \times 58[\mathrm{~mm}]$
on 35 mm DIN-rail according to EN 60715 or with screws M4
IP 30 / IP 20
approx. 180 g

Current-Relay for Obstacle Lights
 AC 12-120 mA for LED-Lamps, 0,1... 1 A for light bulbs

STW200

Current-relays STW200 monitor AC-currents for falling below an adjusted limit. The ranges $12 \ldots$ 120 mA and $0,1 \ldots 1 \mathrm{~A}$ allow the monitoring of LED-Lamps as well as incandescent lamps in obstruction lights.
In case of main lamp failure a relay switches on the reserve lamp. An alarm contact is available for signaling a lamp failure.
If an alarm is required in case of failure of reserve lamp, a second STW200 is used.

- Measuring input 12... 120 mA for LED-lamps
- Measuring input $0,1 \ldots 1 \mathrm{~A}$ for incandescent lamps (bulbs)
- withstands current-peaks when switching on lamp
- Adjustment range 10... 100 \%

Supply voltage Us
Tolerance

Relay output
Type of contact
Measuring ranges
Tolerance / repeating error
Hysteresis
Delay alarm
rated ambient temp. range
Dimensions H x B x T
Line connection
Attachment
Protection housing/terminals Weight

Application:
Monitoring of LED-Lamps or light-bulbs in twin obstacle lights with alarm (lamp failure) and switching on a reserve lamp.
Monitoring of the function of single obstacle lights.
At conventional solutions with a change-over contact, there is a short on-pulse at the reserve lamp everytime when the system is switched on. The STW200 switches it on only in case of a failure of the main lamp.
LED-lamps can also be monitored with long cables between relay and lamp.
When monitoring LED-lamps a total failure is detected. Failures of single LEDs are not detected.

Order-number:
S225530

- Relay for switching on reserve light in operatingcurrent mode
- Relay for alarm in closed-current mode
- Cable-length from relay to lamp up to 500 m
- Display green = o.k., red = low current alarm
- Housing 70 mm wide, mounting height 55 mm

AC $230 \mathrm{~V} 50 / 60 \mathrm{~Hz},<3 \mathrm{VA}$
0,85 ... 1,1 Us
2×1 change-over contact
type 2 see "General Technical Informations"
AC 12... $120 \mathrm{~mA} / \mathrm{AC} 0,1 \ldots 1$ A
± 15 \% / <1 \%
app. 5\%
app. 2 s
$-40^{\circ} \mathrm{C} . . .+55^{\circ} \mathrm{C}$
V 4 : $90 \times 70 \times 58 \mathrm{~mm}$, mounting height 55 mm one wire: $4 \mathrm{~mm}^{2}$, stranded with sleeves: $2,5 \mathrm{~mm}^{2}$ 35 mm DIN-rail or 2 screws M4 (option)
IP 30/ IP 20
app. 210 g

Residual Current Monitor RCM1000V
 Monitoring of AC-currents in grounded power supply systems

RCM100V monitors residual currents in grounded power supply systems. Used as a current relay it monitors AC- or pulsing DCcurrents for exceeding upper or lower limits.
Insulation faults can be caused by damages (mechanical, thermic or chemical) of insulations or also by humidity or pollution. At currents > app. 250 mA (at 230 V) at a location, the fault can lead to danger of fire.

Applied as current relays RCM1000V can among others monitor current in the neutral conductor. Nonlinear loads, e.g. switching power supplies in PC, printers or lights with EGC, cause harmonics in the neutral conductor: Even when the load is symmetric, the harmonics can lead to an overload in the neutral conductor. RCM1000V detectand report this overload.

Residual current monitors detect these faults in widely branched power supply systems and make a signal before additional damage develops.
By displaying the residual current also stealthy changes can easily be detected and localized by switching on and off parts of the power supply system.

Particularly useful in monitoring in systems in which no fault current circuit breaker can or shall be used, because an immediate switching would have wideranging consequences, such as breakdown of computer systems or interruption of processes of sensitive goods. RCM1000V do NOT replace fault current circuitbreakers for protection from electric shock but they can complement it by detection an fault in the insulation before the systems has to be shut off.

- Monitoring of residual currents
- 2 limits for alarm and trip
- Monitoring of current, $2 x$ under- or overcurrent or windows
- Measuring range 0,003 ... 9,999 A
- Setting range 0,010...9,999 A
- Display can be scaled
- Test-button and automatic test every 24 hours
- Input for current transformer STWA3D with monitoring of transformer
- Start-up delay to suppress alarms when switching on
- 4 digits bright LED-display for measured values and programming
- LEDs for alarms, state of relays and units
- Limit, hysteresis, switching delay and switch off delay individually programmable
- Function of relays (nc-, or no-mode) and interlocked switching or autoreset programmable
- Universal supply voltage AC/DC $24-240 \mathrm{~V}$
- Housing for DIN-rail mount, 70 mm wide, mounting height 55 mm

Order-number:
S225710

Technical Data	
Rated supply voltage	AC/ DC $24 \mathrm{~V}-240 \mathrm{~V},<1,5 \mathrm{~W}$, < 5 VA DC 20,4-297 V, AC 20-264 V 50 ... 500 Hz
Relays K1, K2 (alarm 1, 2)	2×1 co-contacts, type 2 , see "general technical informations"
Monitoring of current (program 1 and 2)	
	Type STWA3D... $(20,35,70,125)$ $\leq 10 \mathrm{~m}$, single wire, $\geq 0,75 \mathrm{~mm}^{2}$ $0,003 \text { A ... 9,999 A }$ 10 \% ... 25 \% 50 ... 500 Hz adjustable 0 ... 10 s adjustable 0,03 ... 10,0 s (Prog. 2 = 0,03 ... 500,0 s) adjustable 0 ... 999 s
Residual current relay (program 1 only)	EN 62020
	Alarm 2 -> adjustable 0,010 A ... 9,999 A Alarm 1 -> adjustable 50\% ... 100\% of alarm 2 $0 \text {... -20\% }$ depending of configuration of relays: closed current -> relays release $=$ alarm operating current -> relays remain released (= no alarm) type A \square
Current relay (program 2 only) EN 50178 / EN 60947-5-1	
	$\begin{aligned} & 0,010 \mathrm{~A} \ldots 9,999 \mathrm{~A} \\ & 10 \% \ldots 25 \% \\ & \pm 2 \%, \pm 3 \text { digit } \\ & \pm 10 \%, \pm 3 \text { digit } \end{aligned}$
Insulation	EN 60664-1
	$\begin{aligned} & 4000 \mathrm{~V} \\ & \text { AC } 300 \mathrm{~V} \\ & \text { III } \\ & 2 \end{aligned}$
EMC tests	EN 62020
	$\begin{aligned} & \text { EN } 61000-6-3 \\ & \text { EN } 61000-4-4 \pm 4 \mathrm{kV} \\ & \text { pulse } 5 / 50 \mathrm{~ns}, \mathrm{f}=5 \mathrm{kHz}, \mathrm{t}=15 \mathrm{~ms}, \mathrm{~T}=300 \mathrm{~ms} \\ & \text { IEC } 61000-4-5 \pm 2 \mathrm{kV} \\ & \text { IEC } 61000-4-2 \pm 3,8 \mathrm{kV} \text { discharge contact, } \\ & \pm 6 \mathrm{kV} \text { discharge air } \end{aligned}$
	$\begin{aligned} & -20 \ldots+65^{\circ} \mathrm{C} \\ & -20 \ldots+70^{\circ} \mathrm{C} \end{aligned}$
Housing	Design V4, 4 TE, mounting height 55 mm $70 \times 90 \times 58 \mathrm{~mm}$ IP30/20 Snap mount on standard rail 35 mm acc. to EN 60715 or screws M4 app. 170 g

Current Transformer STWA3D

for use with RCM1000V

The current transformers STWA3D for use with residual current monitor RCM1000V are available with 4 different inside diameters.

STWA3D20-70 can be snapped on a DIN-rail, vertically or horizontally or be fixed with screws. The Bracket for mounting is included.
STWA3D125 can only be mounted with screws.

Bracket for mounting 20-70 mm

Type	Inside diameter	Order-number
STWA3D20	20 mm	S225725
STWA3D35	35 mm	S225726
STWA3D70	70 mm	S225727
STWA3D125	125 mm	S225728
Option:		
Split core current transformer upon request.		

Technical Data

Rated current Kn primary/secondary	$10 \mathrm{~A} / 0,0167 \mathrm{~A}$
Rated power	$50 \mathrm{mVA}(180 \mathrm{Ohm})$
Frequency range	$42 \mathrm{~Hz} \ldots 3 \mathrm{kHz}$
Rated ambient temperature range	$-5^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}$
Temperature storage	$-25^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}$
Rated short-time thermal current $\mathrm{I}_{\text {th }}$	$2,4 \mathrm{kA} / 1 \mathrm{~s}$
Rated continuous residual current	40 A
Nominal current I	$6 \mathrm{kA} / 40 \mathrm{~ms}$
Nominal voltage	$0,8 \mathrm{kV}$
Rated impulse voltage	8 kV
Contamination level	III

Dimensions	STWA3D20	STWA3D35	STWA3D70	STWA3D125
Inside diameter	20 mm	35 mm	70 mm	125 mm
X * $\mathrm{Y}^{*} \mathrm{Z}(\mathrm{mm})$	$53 * 49 * 87$	$68 * 49 * 103$	$103 * 49 * 137$	$173 * 63 * 200$
Weight	120 g	160 g	290 g	910 g

Load and Current-Monitor COSFI100V
 Active Current with direction,Over- and Underload and $\cos \varphi$

COSFI100V

Load monitors protect motors in 1- or 3-phase mains from over- or underload. They are simply switched into the supply-line of the motor and monitor the phase angle between
voltage and current and/or the true current.

The power factor cos fi has its greatest alteration at small loads at the motor. Therefore monitoring this parameter is suitable to recognize underload.

The current of the motor increases most at high loads. Provided that the motor is not oversized, the current is more suitable for monitoring overload.

The COSFI 100 V can monitor both values. It is even possible to monitor the power factor with alarm 1 for underload and protect the drive from overload by monitoring the current with alarm 2.
This allows detection of a breaking V-belt or clogging of a filter or a valve. A local sensor near the motor is not necessary.

- Scaling of display (factor of current-transformer)
- Hysteresis and switchingdelay programmable
- Auto-reset or interlocked switching
- Programmable attempts (1...10) for restart
- Auto-enable (current) or external signal
- Start-up delay programmable $0 . . .99 \mathrm{~s}$
- Current input max. 10A, more with transformers
- Detection of breaks
- Input for PTC-thermistors Housing for mounting in fuseboxes or switchboards

As monitor for current direction, value and direction of active current in one phase is measured. Thus it can be used for the direction dependent monitoring of AC-current. With its digital display and many setting options, it can be individually adapted to the application.

Application $\cos \varphi /$ true current:

- Monitoring of V -belt (slip and destruction)
- Fan-monitoring
- Pump-monitoring
- Conveyor systems
- Agitators
- excessive wear
- wear-out of tools
- Protection of motors, drives and plants from overload

Application current direction:

- Optimizing of own consumption of energy in photovoltaik plants.
Consumers can be switched on or off depending on power available. By measuring current at the feed point it can be detected, wheather there is enough power available to start heat pumps, cooling units or other consumers.
- Warning or shut-down when a generator consumes instead of produce energy

Rated supply voltage Us
Power factor $(\cos \varphi)$
Hysteresis ($\cos \varphi$)
Nominal current of motor
Overload capacity
Input Voltage L1-L2-L3
Relay
Type of contact
Test conditions Rated ambient Temp. Range

Dimensions (HxWxD) mm Attachment

Protection Housing/Terminals Weight

AC $400 \mathrm{~V},+10 \% /-15 \%, 3 \mathrm{VA}, 50 \mathrm{~Hz}$
AC $230 \mathrm{~V},+10 \% /-15 \%, 3 \mathrm{VA}, 50 \mathrm{~Hz}$
-0,99...+0,99
0,05...0,20
$0,2 \ldots 10 \mathrm{~A}$ (higher currents with current-transfomers)
10 A continuously, 15 A max. 3 s
AC $100 . . .400 \mathrm{~V}, 48 \ldots . .62 \mathrm{~Hz}$
2 change-over contacts (co)
Type 2 (see "general technical informations")
see "general technical informations"
$-20^{\circ} \mathrm{C} . . .+55^{\circ} \mathrm{C}$
Design V4: $90 \times 70 \times 58 \mathrm{~mm}$, mounting height 55 mm on rail 35 mm according to EN 60715 or with screws M4 (option)
IP 30/IP 20
app. 300 g

Measuring-Transducer for AC-Current

WS and AS

Current-Transformer Type AS

For currents >5 Acurrentmonitors require a current transformer with secondary 1 or 5 A secondary and a rated capacity of 2.5 VA . The primary rated current must be appropriate to the max. expected current (fuse). Plug-in or winding current transformers can be used. We recommend the use of WS winding current transformers for primary rated currents of 5 to 30 A. For primary rated currents of 60 to 500 A we recommend using AS plug-in current transformers, suitable for the Cu-rail of 30×10 mm or $2 \times 20 \times 10 \mathrm{~mm}$ or round conductor of 28 mm . Both transformers have a Class 1 accuracy and a voltage resistance of up to 800 V . When ordering, please indicate desired type (WS or AS) primary and secondary rated current.

Terminal designation
primary: K/L secondary: k/l
The following winding current transformers type WS are available:

Class 1, 2.5 A

WS5/1 A	$\mathbf{S 2 2 5 1 7 8}$
WS10/1A	$\mathbf{S 2 2 5 1 7 9}$
WS20/1 A	$\mathbf{S 2 2 5 1 8 0}$
WS30/1 A	$\mathbf{S 2 2 5 6 8 8}$
WS5/5 A	$\mathbf{S 2 2 5 1 8 2}$
WS10/5 A	$\mathbf{S 2 2 5 1 8 3}$
WS20/5 A	$\mathbf{S 2 2 5 1 8 4}$
WS30/5A	$\mathbf{S 2 2 5 6 8 9}$

The following AS plug-in current transformers are available:

Class 1, 2.5 A

AS60/1 A	$\mathbf{S 2 2 5 1 7 0}$
AS100/1 A	$\mathbf{S 2 2 5 1 7 1}$
AS200/1 A	$\mathbf{S 2 2 5 1 7 2}$
AS500/1 A	$\mathbf{S 2 2 5 1 7 3}$
AS60/5 A	$\mathbf{S 2 2 5 1 7 4}$
AS100/5A	$\mathbf{S 2 2 5 1 7 5}$
AS200/5 A	$\mathbf{S 2 2 5 1 7 6}$
AS500/5 A	$\mathbf{S 2 2 5 1 7 7}$

Weight approx. 300 g

Frequency- and Speed-Relay FRMU1000 with integrated Measuring-Transducer

FRMU1000

The FRMU1000 is a speed monitor, a frequency-monitor and a measuring-transducer in one device.
2 limits with 1 relay each can be programmed for under- or overspeed, under- or overfrequency or each monitoring of a range (min/max).
The input for monitoring of speed can evaluate signals from pro-ximity-sensors 2- or 3-wire, npnor pnp. The display can be scaled. Thus the real speed of a shaft can be displayed, even though there are several pulses per revolution, e.g. from a cogwheel.

Frequency:

- Measuring-inputs voltage AC 20-200 V/ 80-440 V oder AC 110-300 V/ 210-830 V (option)
- Monitoring of frequency ofown supply-voltage
- Monitoring range $10-500 \mathrm{~Hz}$
- Resolution of display 0,01 Hz

Speed:

- Monitoring range
5... $99999 \mathrm{~min}^{-1}$
- Display can be scaled
- Measuring-input for capacit-ance-switches 2- or 3-wire, npn or pnp
- Start-up-delay programmable
- Start-input (activates device with switching on the monitored drive)

General:

- Setting in Hz or min^{-1}
- 5-digit display
- Analog output DC 0/4-20 mA, or DC 0-10 V, freely scaleable (with isolation to frequencyinput U1/U2)
- 2 limits/ 2 relays

Application as Frequency-Relay:
Monitoring of frequencies in mains $162 / 3$ to 400 Hz on maintaining a range (min/max).

Application as Speed-Relay:
Monitoring of overspeed or underspeed, each with pre-alarm and alarm, monitoring of maintaining a range ($\mathrm{min} / \mathrm{max}$) or monitoring of stop at machines and equipment, e.g. at conveyors, escalators or lifts or for monitoring of drive-belts.

Application as Measuring-Transducer:
In addition, the FRMU can be used as measuringtransducer to convert the input-signal into a standardsignal 0/4-20 mA or 0-10 V.

Function

- Programmable for each relay
- Monitoring of min, max or range
- Hysteresis
- Autoreset reclosing lock
- Delay-time for switching and switching back down to 50 ms
- Operating- or closed-current mode
- LEDs for state of relays and unit (Hz oder min^{-1})
- Storage of min- and max- values of the inputs
- Easy setting with 3 buttons
- Code lock against manipulation of settings
- Universal power supply AC/DC 24-240 V
- Terminals pluggable

Order-numbers:
without analog output FR1000
U226135
with analog output FRMU1000
Input 20-200 / 80-440 V
U226134
Input 110-300 / 210-830 V

Technical Data FRMU1000

Rated supply voltage Us
Frequency
Measuring input Frequency
Admissible voltage
Measuring input Speed
Analog output
max. error
Relay output
Test conditions
Rated ambient temperature range

Dimensions(h x w x d)
Protection housing / terminals
Weight
Attachment

Inductive Proximity Sensor IG2

Proximity-Sensorfor Speed Relay FRMU 1000.

- 3-wire-connection PNP brown =+, blue = -, black = A
- nickel-plated brass
- flush-mounting possible
- max. 48.000 IPM $(800 \mathrm{~Hz})$
- max. switching distance 4 mm (recommended $\leq 3 \mathrm{~mm}$)

AC/DC 24-240 V, <3W, <10VA
(AC 20-264 V, DC 20,4-297 V)
0, $40 \ldots . .500 \mathrm{~Hz},>$ AC $80 \mathrm{~V}: 10 \ldots . .500 \mathrm{~Hz}$
$10.00-500.00 \mathrm{~Hz}$
AC 20-200 V/ 80-440 V
AC 110-300 V/ 210-830 V (option)
5-99999 min ${ }^{-1}$
PNP or NPN, 3-wire or 2-wire
0/4-20 mA, max. 500Ω,
$0-10 \mathrm{~V}$, max. 10 mA
$<0,15 \%$ from FullScale $+0,015 \% / K$
Type 3, see "general technical information"
2×1 (change-over) contact
see "general technical information"
$-20^{\circ} \mathrm{C} \ldots+60^{\circ} \mathrm{C}$
Design V4: $90 \times 70 \times 58 \mathrm{~mm}$, mounting height 55 mm IP 30/IP 20 (terminals pluggable)
app. 180 g
on 35 mm DIN rail or with screws M 4

- Connection cable pluggable
- integrated protection against reverse polartity
- LED for state of output

Connection Cable

- Plug M 12, angled
- Length $5 \mathrm{~m}, 3 \times 0,34 \mathrm{sqmm}$
- PUR cable sheath

Rated supply voltage Us
Max. switching frequency Max. switching distance Factor of reduction Rated amb. temp. range

Housing
Material
Weight
Dimensions
Torque
Connection
Shock resistance
Vibration resistance protection

Order-number IG 2
Order-number cable

DC 10-30 V
$800 \mathrm{~Hz}=48000 \mathrm{Imp} / \mathrm{min}$
4 mm (recomm. $\leq 3 \mathrm{~mm}$)
Ms: 0,45, Al: 0,4, Cu: 0,3
$-25 \ldots+70$ degC
Threaded pipe M12x1 nickel-plated brass app. 26 g M 12×1 / length 50 mm max. 10 Nm threaded plug M 12 $\leq 30 \mathrm{~g}$, $\leq 11 \mathrm{~ms}$ $\leq 55 \mathrm{~Hz}, \leq 1 \mathrm{~mm}$ IP 67

U226003
U226004

Relay for Energy Flow EFR3000
 Optimization of consumption of own energy Zero Export Device, measuring transducer for power

EFR3000

The EFR measures the energy flow in all 3 phases and calculates the mean value.
Is sufficient own power left, the EFR3000 switches on up to three consumers and ensures that the power is consumed in the house. Potential consumers are e.g. air conditioners, boilers or battery chargers but also washing machines, dryers, etc

This is relatively simple if a PV system feeds uniformly under a clear sky and consumers with constant power consumption, such as heat pumps or heating elements, are connected. Particularly suitable are consumers that consume a lot of energy and can be switched frequently, for example boilers.

It becomes more complicated when the generation varies because of clouds before the sun and consumers do not continuously draw current as washers, dryers, irons or stoves.

The analog output can regulate a consumer stepless and thus achieve a yet higher rate of own consumption. When using phase angle controls the specifications of the grid providers have to be obeyed.

Energy flow is always evaluated and displayed, as seen from a power meter for purchasing energy: purchase from public grid is positive, fed in energy reduces the bill and is therefore negative (- sign).

The EFR3000 can optimize the consumption of own energy even under difficult conditions.

Relays for energy flow EFR3000 monitor the current flow between public power grid and generating plant / consumer.
When the own power plant generates more power than actually is consumed it often is more economical to consume the excess energy self. This is especially reasonable when the difference is high between the price you pay
to the grid provider and the price the provider pays for fed in energy.

Functions:

- Shift own consumption into times with high generation of energy
- Switch on consumers when you have overflow of energy
- Increase the share of consumed own energy
- intelligent control of consumers

To achieve this the following parameters can be set

- Switching of up to 3 consumers: the largest consumer, ranked 1-2-3 or combination of 3 consumers (7 levels)
- Power consumption of the connected consumers
- Switch on points. At which energy flow consumers are switched on
- Switch on delay of consumers. Short lowering in consumption (by clocking consumers) or peaks in the feed does not immediately cause turn on of additional consumer
- Minimum on time. Heat pumps may not be switched on and off permanently, washing machines should be able to complete a cycle.
- Switch off delay. Short consumption peaks or reduction of the generated energy does not immediately switch off a load.
- Switch off point. At which energy flow consumers are switched off again. In practice, this value is usually slightly on the purchase side.
- Inputs for blinding out consumers when these are not available, for example when boiler has reached maximum temperature.

Cheap equipment costs ensure a short payback period:
Save $€ 312$ * a year with the EFR3000 by switching on

- at 200 days a year
- for an average 3 hours
- consumers with 4 kW
in times you have a surplus of own energy.
Equipment costs (EFR 3000, 3x current transformer, if necessary contactors) are returned within less than 2 years*.
Longer / shorter switch on times and larger / smaller consumption shorten / extend the period. In addition, in the long term rising purchase prices for energy can be expected.
* Feed $12 \mathrm{Ct} / \mathrm{kWh}$, electricity purchase price $25 \mathrm{Ct} / \mathrm{kWh}$

Technical Data

Rated supply voltage

Relay outputs K1, K2, K3
Switching voltage
Conventionel thermal current Ith
Switching power $\max \cos \varphi=1$
Contact service life, electr. cos $\varphi=1$
Rated operational current
Measurement of voltage (RMS)
Voltage phase-N
Max. error of measurement
Measurement of current Nominal currents / resolution
Max. error of measurement
Overload capacity
Resistance of input
Measurement of active power
Max. error of measurement
Analog output (GND $(\perp), 1+$)
Max. error
Temperature factor
Load
Test conditions
Operating temperature
Dimensions ($\mathrm{B} \times \mathrm{H} \times \mathrm{T}$)
Protection housing/terminals
Attachment
Weight

Features:

- Measuring of active power
- Measuring inputs isolated from electronics
- Colored LCD display
- Intuitive handling with joystick
- 3 inputs for customary current transformers with secondary 1 or 5 A . Ratio programmable
- 3 relay outputs, 2 kW directly, higher loads with contactors
- 2 digital inputs $\mathrm{Y} 1 / \mathrm{Y} 2$ for control signals
- Analog output for stepless regulation of a consumer
- Measuring transducer with analog output 0/4-20 mA for power L1, L2, L3 or L1+L2+L3. Measuring range can be scaled
- Micro-USB port for configuration and update
- Interface RS 485 (Modbus RTU)
- Housing 140 mm wide
- Zero Export Device. Switch off within < 500 ms at inadmissible feed in that is contrary to contract

Order numbers
EFR3000
S225760
Suitable current transformer (split core):
KBR 18S, 60/1A, class $30,4 \mathrm{VA}$
S225770
Suitable mini current transformer:
CTM7, 64/1A, class 1 0,5VA
S225780

DC/AC $24-240 \mathrm{~V} 0 / 50 / 60 \mathrm{~Hz},<3 \mathrm{~W},<9 \mathrm{VA}$
DC 20,4-297V AC 20-264V
3×1 change-over contact
max. AC 300 V , DC 300 V
max. 9 A
2000 VA
10^{5} operations at $300 \mathrm{~V} / 9 \mathrm{~A}$
$A C-15 \mathrm{le}=6 \mathrm{AUe}=250 \mathrm{~V}$
L1 / L2 / L3 towards N
AC $35,0 \ldots 330,0 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$
$\pm 0,5 \%$ of fullscale, ± 1 digit
Primary current max. 1.000 A
AC $1 / 5 \mathrm{~A} / 1 \mathrm{~mA}$
$\pm 0,5 \%$ of fullscale ± 1 digit
8 A continously, 25 A max. 1 s
$25 \mathrm{~m} \Omega$
$\pm 1.000 \mathrm{~kW}$, resolution 1 W
$\pm 1 \%$ of fullscale ± 1 digit
DC 0/4-20 mA for active power $\pm 1.000 \mathrm{~kW}$, scaleable $\pm 0,3 \%$ of fullscale + error of measurement active power
< 0,015 \% / K
$\leq 500 \Omega$
see "general technical information"
$-20^{\circ} \mathrm{C} \ldots+55^{\circ} \mathrm{C}$
$140 \times 90 \times 58 \mathrm{~mm}$, mounting height 55 mm IP 30 / IP20
on 35 mm DIN rail or with screws M4 app. 300 g

Current transformers for Relay for Energy Flow EFR3000 and EFR4000IP

Split core current transformer KBR18S, 60/1 A, class 3, 0,4 VA
Compact current transformer CTM7, 64/1 A, class 1, $0,5 \mathrm{VA}$

KBR18S

The split core current transformer KBR18S is especially suitable for being subsequently mounted in existing facilities. With its primary 60 A it matches perfectly the 63 A with which domestic connections are usually fused.
The secondary 1 A are connected to EFR. The inputs of the EFR are preset for this value.
A clip for mounting on DIN-rail is included.

For EFR three current transformers are required.

The compact current transformer is especially suitable for use in tight space conditions. With its primary 64 A it matches perfectly the 63 A with which domestic connections are usually fused. The secondary 1 A are connected to EFR. The inputs of the EFR are preset for primary currents 60 A , changing is simple.
A clip for mounting on DIN-rail is included. The transformers can be clicked together for saving space. For EFR three current transformers are required.

KBR18S

EN 61869-1, EN 61869-2 und
IEC 61010-1
60 A
1 A
3
0,4 VA
$-5 \ldots+40^{\circ} \mathrm{C}$
$36,0 \times 50 \times 51,1 \mathrm{~mm}$
max. $18,5 \mathrm{~mm}$ (isolated wire only)
cable $2,5 \mathrm{~m} 0,5 \mathrm{~mm}^{2}$
on 35 mm DIN rail or with screws
ca. 180 g

Order-number:
S225770

Order-number:

CTM7
EN 61869-1, EN 61869-2 und
IEC 61010-1
64 A
1 A
1
0,5 VA
$-5 . .+50^{\circ} \mathrm{C}$
$27,5 \times 19 \times 46,5 \mathrm{~mm}$
max. $7,5 \mathrm{~mm}$ (isolated wire only)
Terminals $0,2 \ldots 1,5 \mathrm{~mm}$
on 35 mm DIN rail or with screws ca. 47 g

Relay for Energy Flow EFR4000IP
Optimization of consumption of own energy Integrated Webserver, IP-Connection, Zero Export Device, measuring transducer for power

EFR4000IP S225761
Suitable current transformer (split core) 60/1A, class 3, 0,4VA

KBR 18S S225770

Suitable mini current transformer: 64/1A, class 1, 0,5VA
CTM7
S225780

RelaysforenergyflowEFR4000IP monitor the current flow between public power grid and generating plant / consumer.
Operation is made comfortably via integrated webserver or directly at the device. Measured values are displayed nearty arranged at device on monitor.

When the own power plant generates more power than actually is consumed it often is more
economical to consume the excess energy self. This is especially reasonable when the difference is high between the price you pay to the grid provider and the price the provider pays for fed in energy.

Functions:

- Shift own consumption into times with high generation of energy
- Switch on consumers when you have overflow of energy
- Increase the share of consumed own energy
- intelligent control of consumers

The EFR measures the energy flow in all 3 phases and calculates the mean value.
Is sufficient own power left, the EFR4000IP switches on up to three consumers and ensures that the power is consumed in the house.

This is relatively simple if a PV system feeds uniformly under a clear sky and consumers with constant power consumption, such as heat pumps or heating elements, are connected. Particularly suitable are consumers that consume a lot of energy and can be switched frequently, for example boilers.

It becomes more complicated when the generation varies because of clouds before the sun and consumers do not continuously draw current as washers, dryers, irons or stoves.

The analog output can regulate a consumer stepless and thus achieve a yet higher rate of own consumption. When using phase angle controls the specifications of the grid providers have to be obeyed.

Energy flow is always evaluated and displayed, as seen from a power meter for purchasing energy: purchase from public grid is positive, fed in energy reduces the bill and is therefore negative (- sign).

The EFR4000IP can optimize the consumption of own energy even under difficult conditions.

Features and functions:

- Switching of up to 3 consumers: the largest consumer, ranked 1-2-3 or combination of 3 consumers (7 levels)
- Power consumption of the connected consumers
- Switch on points. At which energy flow consumers are switched on
- Switch on delay of consumers. Short lowering in consumption (by clocking consumers) or peaks in the feed does not immediately cause turn on of additional consumer
- Minimum on time. Heat pumps may not be switched on and off permanently, washing machines should be able to complete a cycle.
- Switch off delay. Short consumption peaks or reduction of the generated energy does not immediately switch off a load.
- Switch off point. At which energy flow consumers are switched off again. In practice, this value is usually slightly on the purchase side.
- Inputs for blinding out consumers when these are not available, for example when boiler has reached maximum temperature.
- Control of heat pumps (SG-ready), battery chargers, inverters

Cheap equipment costs ensure a short payback period:
Save € 312^{*} a year with the EFR4000IP by switching on at 200 days a year for an average 3 hours consumers with 4 kW in times you have a surplus of own energy.

Equipment costs (EFR4000IP, 3x current transformer, if necessary contactors) are returned within about 2 years*.
Longer / shorter switch on times and larger / smaller consumption shorten / extend the period. In addition, in the long term rising purchase prices for energy can be expected.

* Feed 12 Ct / kWh, electricity purchase price 25 Ct / kWh

Features:

- Measuring of active power
- Counters for power (feed in and consumption) and switched on consumers (calculated)
- IP-conntection, integrated webserver
- Operation at device with color display (LCD) and joystick
- 3 inputs for customary current transformers with secondary 1 or 5 A. Ratio programmable
- 3 relay outputs
- 4 digital inputs Y1-Y4 for control signals
- Analog outputs for stepless regulation of a consumer. Zero adjustable 0-10 mA / 0-5 V for charging only when enough power is available
- Measuring transducer for power DC 0/2-10 V, 0/4-20 mA for active power up to $\pm 1000 \mathrm{~kW}$, scaleable
- Housing 140 mm wide
- Zero Export Device and limiter. Switch off within <500 ms at inadmissible feed in that is contrary to contract

Rated supply voltage

Relay outputs K1, K2, K3
Switching voltage
Conventionel thermal current Ith
Switching power $\max \cos \varphi=1$
Contact service life, electr. cos
$\varphi=1$
Rated operational current
Measurement of voltage (RMS)
Voltage phase-N
Max. error of measurement
Measurement of current
Nominal currents / resolution
Max. error of measurement
Overload capacity
Resistance of input
Measurement of active power
Max. error of measurement
Analog outputs (GND $\left.(\perp), 1+, U^{+}\right)$
Max. error
Temperature factor
Load
Test conditions
Operating temperature
Dimensions ($\mathrm{B} \times \mathrm{H} \times \mathrm{T}$)
Protection housing/terminals Attachment
Weight

DC/AC $24-240 \mathrm{~V} 0 / 50 / 60 \mathrm{~Hz},<3 \mathrm{~W},<9 \mathrm{VA}$ DC 20,4-297V AC 20-264 V
3×1 change-over contact max. AC 300 V, DC 300 V max. 9 A
2000 VA
10^{5} operations at $300 \mathrm{~V} / 9 \mathrm{~A}$
$A C-15 \mathrm{le}=6 \mathrm{~A} \mathrm{Ue}=250 \mathrm{~V}$
L1 / L2 / L3 towards N
AC 40,0 ... 330,0 V, 50/60 Hz
$\pm 0,5 \%$ of fullscale, ± 1 digit

Primary current max. 1.000 A
AC $1 / 5$ A / 1 mA
$\pm 0,5 \%$ of fullscale ± 1 digit
8 A continously, 25 A max. 1 s
$25 \mathrm{~m} \Omega$
$\pm 1.000 \mathrm{~kW}$, resolution 1 W
$\pm 1 \%$ of fullscale ± 1 digit
DC 0/4/1-10... $20 \mathrm{~mA}, \mathrm{DC} 0 / 2 / 0-5 \ldots 10 \mathrm{~V}$
$\pm 0,3 \%$ of fullscale + error of measurement active
power
< 0,015 \% / K
$\leq 500 \Omega$
see "general technical information"
$-20^{\circ} \mathrm{C} \ldots+55^{\circ} \mathrm{C}$
$140 \times 90 \times 58 \mathrm{~mm}$, mounting height 55 mm IP 30 / IP20
on 35 mm DIN rail or with screws M4 app. 300 g

Current-Relay SolarYes
 Monitoring of Function at Photovoltaic Systems, Detection of Failure at Inverters, 8 inputs

SolarYes AC

The SolarYes monitors outputs of inverters in PV-systems. Its output-relays (2 potential-free contacts) switch, when there has been no current during the last 24 hours in one of up to 8 monitored lines. Thus the failure of an inverter or a fuse is detected and reported. The operator can initiate repair immediately and saves downtime.
The SolarYes is a simple, easily understandable and economical solution, that protects PV-systems from downtimes.

Function

Inputs:

- 8 inputs for current transformers STWA1 or STWA1H (max. 100 A)
- Not connected inputs disconnectible
- Sensitivity adjustable AC 0,3...2,4 A (lower values by leading the monitored line multiple times through the transformer)
- Autocalibration of inputs
- Enable-input

The device is mounted in a switch cabinet or a distribution box. The current is measured contactless with simple and solid current transformers, that are mounted over the line at any position, e.g. near the fuses. A subsequent installation in an existent system is possible.
Over the course of 24 hours occurring minimal currents (at night there can be wattles currents, caused by interference suppression capacitors in the inverter) are automatically measured and faded out in the evaluation.
The minimum response limit of $0,3 \mathrm{~A}$ allows measuring of low current-levels. The limit can de reduced by leading the monitored line multiple times through the transformer ($\varnothing 11 \mathrm{~mm}$).
In case of false alarms, e.g. with snow on the solar modules, the monitoring interval can be extended to up to 8 days or the alarm can be suppressed with a switch.
The 2 output-relays can switch alarm-lamps or electroacoustic transducers. The connection of an alarm system or another monitoring unit also is possible.

Displays and Controls:

- 8 LEDs for inputs
- 8 LEDs for alarms
- 4 LEDs for display of state and programming
- 2 LEDs for relays
- 1 LED enable-input
- 3 pushbuttons

Other features:

- 2 change-over contacts, nc and no individually programmable
- Autocalibration for easy startup
- Power-saving (Eco-Mode), disconnectible
- Power consumption <0,5 W, <1,2 VA
- Universal supply-voltage AC/DC $24-240 \mathrm{~V}$
- Housing for DIN-rail mount, 70 mm , mounting height 55 mm

Order-number
S225535

For measuring the current, current transformers STWA1 and STWA1H are used, one for every monitored line. The STWA1 consist of a climate-proven sealed-in coil with $2 \times 1 \mathrm{~m}$ cable.
The STWA1H can be fixed on a DIN-rail or mounted with 2 screws. The electrical connection is made via pluggable terminals. A built-in LED lights up at currents $>$ app. 2 A.
The inner diameter of both current transformers is 11 mm , the maximum current is 100 A .

Order-numbers: STWA1 S225201 STWA1H S225506

Rated Supply Voltage	AC/DC 24-240 V, 0/45... 65 Hz DC: $20,4 \ldots 297 \mathrm{~V}, \mathrm{AC}: 20,4 \ldots 264 \mathrm{~V}$
Power Consumption	<0,5 W, <1,2 VA
Relay-Output	2 Change-over contact (CO) type 2, see general technical hints
Measuring Inputs	1-8 Current transformers STWA 1 or STWA 1 H Sensitivity adjustable AC 0,3-2,4 A $\pm 30 \%$ max. 100 A continously, 300 A / 10 s
Function	Monitoring interval adjustable 1-8 days
Test Conditions	see general technical hints
Rated ambient temperature range	$-20^{\circ} \mathrm{C} \ldots+65^{\circ} \mathrm{C}$
Housing	Design V4
Dimensions ($\mathrm{w} \times \mathrm{h} \times \mathrm{d}$)	$70 \times 90 \times 58 \mathrm{~mm}$, mounting height 55 mm
Protection housing/terminals	IP $30 / \mathrm{IP} 20$
Attachment	DIN-rail 35 mm or screw-mount M4
Weight	approx. 180 g

Digital Measuring-Instruments MINIPAN ${ }^{\circledR}$

MINPAN ${ }^{\circledR} 300$ 124
Panel-mount $36 \times 72 \mathrm{~mm}, 4$ digits
MINIPAN ${ }^{\circledR} 350 \mathrm{~V}$ and 352 V 126
Switch gear-cabinet-mount, 4 digits with alarms / relays
MINIPAN ${ }^{\circledR}$ 352P 130
Panel-mount $72 \times 72 \mathrm{~mm}, 4$ digits with alarms / relays
MINIPAN ${ }^{\circledR}$ SE352 132Panel-mount $48 \times 96 \mathrm{~mm}, 4$ digitswith alarms / relays3
Measuring Point Change-over-switches see products group 5

Universal-Digital Panelmeter MINIPAN 300

in Housing for Panel-Mount $36 \times 72 \mathrm{~mm}$

With its 4 digit, 14 mm high display, Digital Panelmeters of MINIPAN 300-series allow the accurate display of different values in the range -1999 ... +9999. Only 3 designs cover the measuring of DC voltage and current, AC voltage and current and temperature with Pt 100 -sensors (RTD).
The display can be easily programmed by the customer (e.g. input 0-10 V --> display 0-350.0 ms or AC 0-1 A ---> 0-400.0 A With the built-in universal powersupply AC/DC $24-240 \mathrm{~V}$ it is especiall versatile.

Inputs DC-Meter:

- Measuring of current with external shunt max. 300 mV
- 1 A for direct measuring of current
- 0/4-20 mA for standard-
- signals
- 0-10 V for standard-signals
- 100/500 V switchable

Inputs AC-Meter:

- 500 V
- 50 V
- 10 V
- Measuring of current with external shunt max. 150 mV
- 1 A for direct measuring of current or with external transformers

Measuring of Temperature Pt100 (RTD):

- Pt100 in 2- or 3-wire connection
- Measuring Range -199,9 ... $+850,0^{\circ} \mathrm{C}$
- Resolution $0,1^{\circ} \mathrm{C}$
- Display in ${ }^{\circ} \mathrm{C}$ or ${ }^{\circ} \mathrm{F}$

Easy programming with 3 buttons

- Display (skaling, decimal-point)
- Display of MIN- and MAX-values
- Delay at unstable signals
- Code-lock against manipulation of settings

Additional Features:

- Sticker with different measuring units included
- Terminals pluggable
- Face-Plate $36 \times 72 \mathrm{~mm}$

Order-numbers:

MINIPAN 300 DC	D440300
MINIPAN 300 AC	D440320
MINIPAN 300 Pt 100	D440340

Power supply	rated supply-voltage Us tolerance DC tolerance AC power consumption frequency	AC/DC 24-240 V DC $20-297 \mathrm{~V}(0,85 \times 24 \mathrm{~V} . . .1,35 \times 220 \mathrm{~V})$ AC 20-264 V ($0,85 \times 24 \mathrm{~V}$... $1,1 \times 240 \mathrm{~V})$ < 3 VA 48... 62 Hz
Measuring inputs	(always connect 1 input only)	potentially separated from supply-voltage
	DC-Meter measuring-range / resistance of input / overload capacity	$\begin{aligned} & \pm 300 \mathrm{mV} / 120 \mathrm{k} \Omega / \max . \pm 2,5 \mathrm{~V} \\ & \pm 10.00 \mathrm{~V} / 1 \mathrm{M} \Omega / \max . \pm 50 \mathrm{~V} \\ & +500.0 \mathrm{~V} /-199.9 \mathrm{~V} / 3 \mathrm{M} \Omega / \max . \pm 600 \mathrm{~V} \\ & +100.0 \mathrm{~V} /-100.0 \mathrm{~V} / 3 \mathrm{M} \Omega / \max \pm 600 \mathrm{~V} \\ & +20.00 \mathrm{~mA} /-19.99 \mathrm{~mA} / \text { Shunt } 15 \Omega / \max . \pm 100 \mathrm{~mA} \\ & \pm 1.00 \mathbf{A} / \text { Shunt } 150 \mathrm{~m} \Omega / \max . \pm 2 \mathrm{~A} \end{aligned}$
	AC-Meter measuring-range / resistance of input / overload capacity	$\begin{aligned} & 150 \mathrm{mV} / 900 \Omega / \max .2,5 \mathrm{~V} \\ & 10.00 \mathrm{~V} / 100 \mathrm{k} \Omega / \max .50 \mathrm{~V} \\ & 50.0 \mathrm{~V} / 1 \mathrm{M} \Omega / \max .60 \mathrm{~V} \\ & 500.0 \mathrm{~V} / 3 \mathrm{M} \Omega / \max .600 \mathrm{~V} \\ & 1.00 \mathrm{~A} / \operatorname{Shunt} 150 \mathrm{~m} \Omega / \max .2 \mathrm{~A} \end{aligned}$
	Temperature Pt 100 (RTD) sensor-input resistance 3-wire measuring time AC/DC measuring time Pt 100	$\begin{aligned} & -199,9 \ldots+850,0^{\circ} \mathrm{C}\left(=-328 \ldots+1563{ }^{\circ} \mathrm{F}\right) \\ & \text { Pt } 100,2-\text { or } 3 \text {-wire connection } \\ & \operatorname{max.} 3 \times 50 \Omega \\ & <400 \mathrm{~ms} \\ & <400 \mathrm{~ms} \end{aligned}$
Accuracy	resolution error (of full measuring range) DC-voltage, DC-current AC-voltage, AC current temperature factor total error at temperature-measu- ring temperature factor	$\begin{aligned} & +9999 /-1999 \\ & \pm 0,1 \% \pm 1 \text { Digit } \\ & \pm 0,5 \% \pm 1 \text { Digit } \\ & \pm 0,02 \% / \mathrm{K} \\ & \pm 0,3 \% \text { of value } \pm 0,5 \mathrm{~K} \\ & \pm 0,03^{\circ} \mathrm{C} / \mathrm{K} \end{aligned}$
Housing	Design 300 dimensions ($\mathrm{h} \times \mathrm{w} \times \mathrm{d}$) mm Attachment Single wire Fine wired with end sleeves Rated ambient temperature range protection housing/terminals weight	$\begin{aligned} & \text { panel-mount housing } \\ & 36 \times 72 \times 79 \mathrm{~mm} \\ & \text { panel-mount, panel cutout } 33^{+0,6} \times 688^{+0,6} \mathrm{~mm} \\ & \text { max. thickness of panel } 8 \mathrm{~mm} \\ & 1 \times 0,5 \ldots 1,5 \mathrm{~mm}^{2} \\ & 1 \times 0,14 \ldots 1 \mathrm{~mm}^{2} \\ & -20 \ldots+60^{\circ} \mathrm{C} \\ & \mathrm{IP} 30 / \mathrm{IP} 20 \\ & \text { ca. } 120 \mathrm{~g} \end{aligned}$

Universal-Display MINIPAN 350V
 in Housing for DIN-Rail-Mount

MINIPAN 350V

With its 4 digit, 7 mm high display Digital measuring-instruments of MINIPAN 350 V - series allow the accurate display of different values in the range -1999.. +9999.
Only 3 designs cover the measuring of DC voltage and current, AC voltage and current and temperature with Pt 100-sensors (RTD).
The display can be easily programmed by the customer (e.g. input 0-10 V --> display 0-350.0 ms or AC 0-1 A ---> 0-400.0 A).
With the built-in universal powersupply $A C / D C 24-240 \mathrm{~V}$ it is especiall versatile.

Inputs DC-Meter:

- Measuring of current with external shunt max. 300 mV
- 1 A for direct measuring of current
- 0/4-20 mA for standardsignals
- 0-10 V for standard-signals
- 100/500 V switchable

Inputs AC-Meter:

- 500 V
- 50 V
- 10 V
- Measuring of current with external shunt max. 150 mV
- 1 A for direct measuring of current or with external transformers

Measuring of Temperature Pt 100 (RTD):

- Pt100 in 2- or 3-wire connection
- Measuring Range $-199,9 \ldots+850,0^{\circ} \mathrm{C}$
- Resolution $0,1^{\circ} \mathrm{C}$
- Display in ${ }^{\circ} \mathrm{C}$ or ${ }^{\circ} \mathrm{F}$

Easy programming with 3 buttons

- Display (skaling, decimal-point)
- Display of MIN- and MAX-values
- Delay at unstable signals
- Code-lock against manipulation of settings

Additional Features:

- Sticker with different measuring units included
- Terminals pluggable
- Mounting-height $55 \mathrm{~mm}, 70 \mathrm{~mm}$ wide

Order-numbers:

MINIPAN 350V DC	D890110
MINIPAN 350V AC	D890210
MINIPAN 350V Pt100	D890310

Power supply	rated supply-voltage Us tolerance DC tolerance AC power consumption frequency	AC/DC 24-240 V DC $20-297 \mathrm{~V}(0,85 \times 24 \mathrm{~V} . . .1,35 \times 220 \mathrm{~V})$ AC 20-264 V ($0,85 \times 24 \mathrm{~V}$... $1,1 \times 240 \mathrm{~V})$ < 3 VA 48... 62 Hz
Measuring inputs	(always connect 1 input only)	potentially separated from supply-voltage
	DC-Meter measuring-range / resistance of input / overload capacity	$\begin{aligned} & \pm \mathbf{3 0 0} \mathrm{mV} / 120 \mathrm{k} \Omega / \max . \pm 2,5 \mathrm{~V} \\ & \pm 10.00 \mathrm{~V} / 1 \mathrm{M} \Omega / \max . \pm 50 \mathrm{~V} \\ & \mathbf{+ 5 0 0 . 0} \mathrm{~V} /-199.9 \mathrm{~V} / 3 \mathrm{M} \Omega / \max . \pm 600 \mathrm{~V} \\ & +100.0 \mathrm{~V} /-100.0 \mathrm{~V} / 3 \mathrm{M} \Omega / \max . \pm 600 \mathrm{~V} \\ & +\mathbf{2 0 . 0 0} \mathrm{mA} /-19.99 \mathrm{~mA} / \text { Shunt } 15 \Omega / \max . \pm 100 \mathrm{~mA} \\ & \pm 1.00 \mathbf{A} / \text { Shunt } 150 \mathrm{~m} \Omega / \max . \pm 2 \mathrm{~A} \end{aligned}$
	AC-Meter measuring-range / resistance of input / overload capacity	$\begin{aligned} & 150 \mathrm{mV} / 900 \Omega / \max .2,5 \mathrm{~V} \\ & 10.00 \mathrm{~V} / 100 \mathrm{k} \Omega / \max .50 \mathrm{~V} \\ & 50.0 \mathrm{~V} / 1 \mathrm{M} \Omega / \max .60 \mathrm{~V} \\ & 500.0 \mathrm{~V} / 3 \mathrm{M} \Omega / \max .600 \mathrm{~V} \\ & 1.00 \mathrm{~A} / \operatorname{Shunt} 150 \mathrm{~m} \Omega / \max .2 \mathrm{~A} \end{aligned}$
	Temperature Pt 100 (RTD) sensor-input resistance 3-wire	$-199,9 \ldots+850,0^{\circ} \mathrm{C}\left(=-328 \ldots+1563^{\circ} \mathrm{F}\right)$ Pt 100, 2- or 3-wire connection $\max .3 \times 50 \Omega$
	measuring time $A C / D C$ measuring time Pt 100	$\begin{aligned} & <400 \mathrm{~ms} \\ & <400 \mathrm{~ms} \end{aligned}$
Accuracy	resolution error (of full measuring range) DC-voltage, DC-current AC-voltage, AC current temperature factor total error attemperature-measu- ring temperature factor	$\begin{aligned} & +9999 /-1999 \\ & \pm 0,1 \% \pm 1 \text { Digit } \\ & \pm 0,5 \% \pm 1 \text { Digit } \\ & \pm 0,02 \% / \text { Kelvin } \\ & \pm 0,3 \% \text { of value } \pm 0,5 \mathrm{~K} \\ & \pm 0,03^{\circ} \mathrm{C} / \mathrm{K} \end{aligned}$
Housing	housing dimensions ($\mathrm{h} \times \mathrm{w} \times \mathrm{d}$) mm terminals Attachment	design V 2 $90 \times 35 \times 58 \mathrm{~mm}$, mounting height 55 mm 8 -pole on 35 mm DIN-rail or with screws M4
	ambient temperature range protection housing/ protection terminals weight	$-20 \ldots+60{ }^{\circ} \mathrm{C}$ IP 30 IP 20 app. 100 g

Universal-Instrument MINIPAN 352V
 for DIN-rail-mounting

MINIPAN 352V

With its 4 digit, 14 mm high display, Digital Panelmeters of MINIPAN 352 V - series allow the accurate display of different values in the range -1999 ... +9999.
Measuring inputs AC (True RMS), DC current and voltage and measuring of restistance and of temperatures with various sensors are combined in one instrument.
Two programmable switching points allow applications as limit-switch or 2- or 3-point controller.
With EasyLimit the switching points can be set easily. Other parameters are blocked and thus protected from unindended manipulation.
With its analog output (option) it is in addition a measuringtransducer.
The display can be easily programmed by the user (e.g. input DC $4-20 \mathrm{~mA} /$ display $0-350.0 \mathrm{~m} / \mathrm{s}$ or $0 \ldots 200 \Omega$ / $0 . . .3000 \mathrm{~mm}$ or $A C$ 0-5 A / 0-400.0 A).
In addition the built-in universal power-supply AC/DC 24-240 V makes it even more versatile.

- Temperature:

- Pt 100 (RTD), Pt 1000, KTY 83 and KTY 84 in 2- or 3-wire connection
- Thermocouples type B, E, J, K, L, N, R, S, T
- Measuring range -170 ... $+1820^{\circ} \mathrm{C}$
- Resolution $0.1^{\circ} \mathrm{C}$ (up to 999.9 C)
- Display in ${ }^{\circ} \mathrm{C}$ or ${ }^{\circ} \mathrm{F}$
- AC/DC-measuring inputs:
- 300 mV for measuring current with external shunt
- 1 and 5 A for direct measuring of current (or AC with external transformer)
- 500 V
- 10 V for standard signals
- 20 mA for standard signals
- AC-measuring TrueRMS
- Measuring of resistance
- Range 0... 500Ω
- Range $0 . . .30 \mathrm{k} \Omega$
- Easy programming with 3 buttons and supporting display:
- Display (zero, fullscale, decimal point)
- 2 switching points with hysteresis and delays
- EasyLimit for easy setting of alarms
- Switching with automatic reset or interlocked
- MIN/MAX-contacts or operating-/closed current mode of relays
- Storage of MIN- and MAX-values
- Average of multiple measurings
- Simulation of operation
- Code-lock against manipulation of settings
- Outputs 2 potential-free change-over contacts (co)
- Supply-voltage for external measuring transducer 4-20 mA
- Sticker with different measuring units included
- Terminals pluggable
- Mounting dimensions $72 \times 72 \mathrm{~mm}$
- Supply-voltage AC/DC $24-240 \mathrm{~V}$
- Option: analog output $4 \ldots 20 \mathrm{~mA}$ (insulated when externally supplied)

Order-numbers: D340101
D340110 (with analog output)

Power supply	Rated supply-voltage Us Tolerance DC Tolerance AC Power consumption Frequency	AC/DC 24-240 V DC $20-297 \mathrm{~V}(0,85 \times 24 \mathrm{~V} . . .1,35 \times 220 \mathrm{~V})$ AC $20-264 \mathrm{~V}(0,85 \times 24 \mathrm{~V}$... $1,1 \times 240 \mathrm{~V})$ < 5 VA 48... 62 Hz
Measuring inputs		potentially separated from supply-voltage (always connect 1 input only at the same time)
	DC-measuring Measuring-range / inputResistance / overload capacity	$\begin{aligned} & \pm \mathbf{3 0 0} \mathrm{mV} / 29 \mathrm{k} \Omega / \max . \pm 2,5 \mathrm{~V} \\ & \pm \mathbf{1 0 . 0 0 ~ V} / 1 \mathrm{M} \Omega / \max . \pm 50 \mathrm{~V} \\ & \pm 500.0 \mathrm{~V} / 3 \mathrm{M} \Omega / \max . \pm 600 \mathrm{~V} \\ & \pm \mathbf{2 0 . 0 0} \mathrm{mA} / \mathrm{Shunt} 8 \Omega / \max . \pm 100 \mathrm{~mA} \\ & \pm 1.00 \mathrm{~A} / \text { Shunt } 150 \mathrm{~m} \Omega / \max . \pm 2 \mathrm{~A} \\ & \pm \mathbf{5 . 0 0 ~ A} / \text { Shunt } 30 \mathrm{~m} \Omega / \max . \pm 7,5 \mathrm{~A} \text { for } 10 \mathrm{~s} \end{aligned}$
	AC-measuring Measuring-range / inputResistance / overload capacity	$300 \mathrm{mV} / 20 \mathrm{k} \Omega / \max .2,5 \mathrm{~V}$ $10.00 \mathrm{~V} / 1 \mathrm{M} \Omega / \max .50 \mathrm{~V}$ $500.0 \mathrm{~V} / 3 \mathrm{M} \Omega / \max .600 \mathrm{~V}$ 20.00 mA / Shunt $8 \Omega / \mathrm{max} .100 \mathrm{~mA}$ $1.00 \mathrm{~A} /$ Shunt $150 \mathrm{~m} \Omega / \mathrm{max} .2 \mathrm{~A}$ 5.00 A / Shunt $30 \mathrm{~m} \Omega$ / max. 7,5 A for 10 s
	Messuring of resistance	$\begin{aligned} & 0 \ldots 500 \Omega \\ & 0 \ldots 30 \mathrm{k} \Omega \end{aligned}$
	Temperature-measuring Sensor-input Thermocouples	$-199,9 \ldots+850,0^{\circ} \mathrm{C}\left(=-328 \ldots+1563^{\circ} \mathrm{F}\right)$ Pt 100, Pt 1000, KTY 83, KTY 84, 2- or 3-wire connection, line-resistance max. $3 \times 50 \Omega$ B, E, J, K, L, N, R, S, T
	Measuring time DC Measuring time AC Measuring time temperature + Resistance	$\begin{aligned} & <300 \mathrm{~ms} \times \varnothing \\ & <700 \mathrm{~ms}+300 \mathrm{~ms} \times \varnothing \\ & <600 \mathrm{~ms} \text { (3-wire + thermocouple) } \\ & <300 \mathrm{~ms} \text { (2-wire) } \end{aligned}$
Output	Relay output Analog output Supply-voltage for loop-powered measuring transducer and analog output	Typ 2, see "general technical informations" 2×1 change-over) contanct 4-20 mA (insulated when externally supplied) DC $15-20 \mathrm{~V} /$ max. 45 mA
Accuracy	Resolution Error DC (of FullScale) Error AC (of FullScale) Error resistance (of value) Error Pt 100 (of value)	$\begin{aligned} & -1999 /+9999 \\ & \pm 0,1 \% \pm 1 \text { Digit } \pm 0,02 \% \mathrm{~K} \\ & \pm 0,5 \% \pm 1 \text { Digit } \pm 0,05 \% \mathrm{~K} \\ & 500 \Omega: 0,2 \% \pm 0,5 \Omega \\ & 30 \mathrm{k} \Omega: 0,5 \% \pm 2 \Omega \\ & \pm 0,2 \% \pm 0,5 \mathrm{~K} \pm 0,04{ }^{\circ} \mathrm{C} / \mathrm{K} \end{aligned}$
Housing	Housing Dimensions (h x w x d) mm Attachment	$\begin{aligned} & \text { V4 } \\ & 90 \times 70 \times 58 \mathrm{~mm} \end{aligned}$ on 35 mm DIN rail according to EN 60715 or with 2 screws M4 (option)
	Ambient temperature range Protection housing Protection terminals Weight	$\begin{aligned} & -20 \ldots+60{ }^{\circ} \mathrm{C} \\ & \text { IP } 30 \\ & \text { IP } 20 \\ & \text { approx. } 190 \mathrm{~g} \end{aligned}$

Universal-Instrument MINIPAN 352P
 in Housing for Panel-Mount $72 \times 72 \mathrm{~mm}$

MINIPAN 352P

With its 4 digit, 14 mm high display, Digital Panelmeters of MINIPAN 352P- series allow the accurate display of different values in the range -1999 ... +9999.
Measuring inputs AC (True RMS), DC current and voltage and measuring of restistance and of temperatures with various sensors are combined in one instrument.
Two programmable switching points allow applications as limit-switch or 2- or 3-point controller.
With EasyLimit the switching points can be set easily. Other parameters are blocked and thus protected from unindended manipulation.
With its analog output (option) it is in addition a measuringtransducer.
The display can be easily programmed by the user (e.g. input DC $4-20 \mathrm{~mA} /$ display $0-350.0 \mathrm{~m} / \mathrm{s}$ or $0 \ldots 200 \Omega$ / $0 . . .3000 \mathrm{~mm}$ or AC $0-5 \mathrm{~A} / 0-400.0 \mathrm{~A}$).
In addition the built-in universal power-supply AC/DC 24-240 V makes it even more versatile.

- Temperature:

- Pt 100 (RTD), Pt 1000, KTY 83 and KTY 84 in 2- or 3-wire connection
- Thermocouples type B, E, J, K, L, N, R, S, T
- Measuring range -170 ... $+1820^{\circ} \mathrm{C}$
- Resolution $0.1^{\circ} \mathrm{C}$ (up to 999.9 C)
- Display in ${ }^{\circ} \mathrm{C}$ or ${ }^{\circ} \mathrm{F}$
- AC/DC-measuring inputs:
- 300 mV for measuring current with external shunt
- 1 and 5 A for direct measuring of current (or AC with external transformer)
- 500 V
- 10 V for standard signals
- 20 mA for standard signals
- AC-measuring TrueRMS
- Measuring of resistance:
- Range 0... 500Ω
- Range $0 . . .30 \mathrm{k} \Omega$
- Easy programming with 3 buttons and supporting display:
- Display (zero, fullscale, decimal point)
- 2 switching points with hysteresis and delays
- EasyLimit for easy setting of alarms
- Switching with automatic reset or interlocked
- MIN/MAX-contacts or operating-/closed current mode of relays
- Storage of MIN- and MAX-values
- Average of multiple measurings
- Simulation of operation
- Code-lock against manipulation of settings
- Outputs 2 potential-free change-over contacts (co)
- Supply-voltage for external measuring transducer 4-20 mA
- Sticker with different measuring units included
- Terminals pluggable
- Mounting dimensions $72 \times 72 \mathrm{~mm}$
- Supply-voltage AC/DC $24-240 \mathrm{~V}$
- Option: analog output $4 \ldots 20 \mathrm{~mA}$ (insulated when externally supplied)

Order-numbers: D440200
D440210 (with analog output)

Power supply

Measuring inputs

Accuracy

Housing

Rated supply-voltage Us
Tolerance DC
Tolerance AC
Power consumption
Frequency
DC-measuring
Measuring-range / input-
Resistance / overload capacity

AC-measuring
Measuring-range / input-
Resistance / overload capacity

Messuring of resistance

Temperature-measuring
Sensor-input
Thermocouples
Measuring time DC
Measuring time AC
Measuring time temperature +
Resistance

Relay output
Analog output
Supply-voltage for loop-powered measuring transducer and analog output

Resolution
Error DC (of FullScale)
Error AC (of FullScale)
Error resistance
(of value)
Error Pt 100 (of value)

Dimensions (h x w x d) mm
Attachment
Rated ambient temperaturerange

Protection housing
Protection terminals Weight

AC/DC $24-240 \mathrm{~V}$
DC $20-297 \mathrm{~V}(0,85 \times 24 \mathrm{~V} . . .1,35 \times 220 \mathrm{~V})$
AC $20-264 \mathrm{~V}(0,85 \times 24 \mathrm{~V} . . .1,1 \times 240 \mathrm{~V})$
< 3 W , < 10 VA
$48 \ldots 62 \mathrm{~Hz}$
potentially separated from supply-voltage (always connect 1 input only at the same time)

```
\pm300 mV / 29 k\Omega / max. }\pm2,5 V 
\pm10.00 V / 1 M / max. }\pm50\textrm{V
\pm500.0 V / 3 M\Omega / max. }\pm600 
\pm20.00 mA / Shunt 8\Omega/ max. }\pm100\textrm{mA
\pm1.00 A / Shunt 150 m\Omega/max. }\pm2\textrm{A
\pm5.00 A / Shunt 30 m\Omega / max. }\pm7,5\textrm{A}\mathrm{ for 10 s
```

$300 \mathrm{mV} / 20 \mathrm{k} \Omega / \max .2,5 \mathrm{~V}$
$10.00 \mathrm{~V} / 1 \mathrm{M} \Omega / \max .50 \mathrm{~V}$
$500.0 \mathrm{~V} / 3 \mathrm{M} \Omega / \max .600 \mathrm{~V}$ 20.00 mA / Shunt 8Ω / max. 100 mA
1.00 A / Shunt $150 \mathrm{~m} \Omega / \max .2 \mathrm{~A}$
5.00 A / Shunt $30 \mathrm{~m} \Omega$ / max. 7,5 A for 10 s
$0 . . .500 \Omega$
$0 . . .30 \mathrm{k} \Omega$
$-199,9 \ldots+850,0^{\circ} \mathrm{C}\left(=-328 \ldots+1563{ }^{\circ} \mathrm{F}\right)$
Pt 100, Pt 1000, KTY 83, KTY 84, 2- or 3-wire connection, line-resistance max. $3 \times 50 \Omega$
B, E, J, K, L, N, R, S, T
$<300 \mathrm{~ms} \times \varnothing$
$<700 \mathrm{~ms}+300 \mathrm{~ms} \times \varnothing$
$<600 \mathrm{~ms}$ (3-wire + thermocouple)
$<300 \mathrm{~ms}$ (2-wire)

Typ 2, see "general technical informations" 2×1 change-over) contanct 4-20 mA (insulated when externally supplied) DC 15-20 V/max. 45 mA

```
-1999 / +9999
\pm0,1% }\pm1\mathrm{ Digit }\pm0,02% 
\pm0,5 % \pm 1 Digit }\pm0,05% 
500 \Omega: 0,2 % \pm0,5\Omega
30 k\Omega: 0,5 % \pm2\Omega
\pm0,2% # 0,5 K \pm0,04 ' C/K
panel-mount housing 72 x 72 mm
72 x 72 x 103 mm
panel-mount, panel cutout 68 +0,7 }\times68\mp@subsup{8}{}{+0,7}\textrm{mm
max. thickness of panel: }8\textrm{mm
-20...+60 o
front-side IP 50, back-side IP 20
IP 20
approx. 240 g
```


Universal-Instrument MINIPAN SE352

in Housing for Panel-Mount $48 \times 96 \mathrm{~mm}$

With its 4 digit, 14 mm high display, Digital Panelmeters of MINIPAN SE 352-series allow the accurate display of different values in the range -1999 ... +9999.
Measuring inputs AC (True RMS), DC current and voltage and measuring of restistance and of temperatures with various sensors are combined in one instrument.
Two programmable switching points allow applications as limit-switch or 2- or 3-point controller.
With EasyLimit the switching points can be set easily. Other parameters are blocked and thus protected from unindended manipulation.
With its analog output (option) it is in addition a measuringtransducer.
The display can be easily programmed by the user (e.g. input DC $4-20 \mathrm{~mA} /$ display $0-350.0 \mathrm{~m} / \mathrm{s}$ or $0 \ldots 200 \Omega$ / $0 \ldots 3000 \mathrm{~mm}$ or $A C$ 0-5 A / 0-400.0 A).
In addition the built-in universal power-supply AC/DC $24-240 \mathrm{~V}$ makes it even more versatile.

- Temperature:
- Pt 100 (RTD), Pt 1000, KTY 83 and KTY 84 in 2- or 3-wire connection
- Thermocouples type B, E, J, K, L, N, R, S, T
- Measuring range -170 ... $+1820{ }^{\circ} \mathrm{C}$
- Resolution $0.1^{\circ} \mathrm{C}$ (up to 999.9 C)
- Display in ${ }^{\circ} \mathrm{C}$ or ${ }^{\circ} \mathrm{F}$
- AC/DC-measuring inputs:
- 300 mV for measuring current with external shunt
- 1 and 5 A for direct measuring of current (or AC with external transformer)
- 500 V
- 10 V for standard signals
- 20 mA for standard signals
- AC-measuring TrueRMS
- Measuring of resistance:
- Ranges $0 . . .500 \Omega, 0 . . .30 \mathrm{k} \Omega$
- Easy programming with 3 buttons and supporting display:
- Display (zero, fullscale, decimal point)
- 2 switching points with hysteresis and delays
- EasyLimit for easy setting of alarms
- Switching with automatic reset or interlocked
- MIN/MAX-contacts or operating-/closed cur-
- rent mode of relays
- Storage of MIN- and MAX-values
- Average of multiple measurings
- Simulation of operation
- Code-lock against manipulation of settings
- Outputs 2 potential-free change-over contacts (co)
- Supply-voltage for external measuring transducer 4-20 mA
- Sticker with different measuring units included
- Terminals pluggable
- Mounting dimensions $48 \times 96 \mathrm{~mm}$
- Splash-proof frontside IP54
- Supply-voltage AC/DC $24-240 \mathrm{~V}$
- Option: analog output 4... 20 mA (insulated when externally supplied)

Order-numbers: D440101
D440110 (with analog output)

Power supply	Rated supply-voltage Us Tolerance DC Tolerance AC Power consumption Frequency	AC/DC 24-240 V DC $20-297 \mathrm{~V}(0,85 \times 24 \mathrm{~V} . .1,35 \times 220 \mathrm{~V})$ AC $20-264 \mathrm{~V}(0,85 \times 24 \mathrm{~V}$... $1,1 \times 240 \mathrm{~V})$ $<3 \mathrm{~W}$, < 10 VA 48... 62 Hz
Measuring inputs		potentially separated from supply-voltage (always connect 1 input only at the same time)
	DC-measuring Measuring-range / inputResistance / overload capacity	$\begin{aligned} & \pm \mathbf{3 0 0} \mathrm{mV} / 29 \mathrm{k} \Omega / \max . \pm 2,5 \mathrm{~V} \\ & \pm \mathbf{1 0 . 0 0 \mathrm { V } / 1 \mathrm { M } \Omega / \operatorname { m a x } . \pm 5 0 \mathrm { V }} \\ & \pm 500.0 \mathrm{~V} / 3 \mathrm{M} \Omega / \max . \pm 600 \mathrm{~V} \\ & \pm 20.00 \mathrm{~mA} / \mathrm{Shunt} 8 \Omega / \max . \pm 100 \mathrm{~mA} \\ & \pm 1.00 \mathrm{~A} / \text { Shunt } 150 \mathrm{~m} \Omega / \max . \pm 2 \mathrm{~A} \\ & \pm 5.00 \mathrm{~A} / \text { Shunt } 30 \mathrm{~m} \Omega / \max . \pm 7,5 \mathrm{~A} \text { for } 10 \mathrm{~s} \end{aligned}$
	AC-measuring Measuring-range / inputResistance / overload capacity	$\begin{aligned} & 300 \mathrm{mV} / 20 \mathrm{k} \Omega / \max .2,5 \mathrm{~V} \\ & 10.00 \mathrm{~V} / 1 \mathrm{M} \Omega / \max .50 \mathrm{~V} \\ & 500.0 \mathrm{~V} / 3 \mathrm{M} \Omega / \max .600 \mathrm{~V} \\ & 20.00 \mathrm{~mA} / \mathrm{Shunt} 8 \Omega / \max .100 \mathrm{~mA} \\ & 1.00 \mathrm{~A} / \text { Shunt } 150 \mathrm{~m} \Omega / \max .2 \mathrm{~A} \\ & 5.00 \mathrm{~A} / \text { Shunt } 30 \mathrm{~m} \Omega / \max .7,5 \mathrm{~A} \text { for } 10 \mathrm{~s} \end{aligned}$
	Messuring of resistance	$0 . . .500 \Omega, 0 . . .30 \mathrm{k} \Omega$
	Temperature-measuring Sensor-input Thermocouples	$-199,9 \ldots+850,0^{\circ} \mathrm{C}\left(=-328 \ldots+1563^{\circ} \mathrm{F}\right)$ Pt 100, Pt 1000, KTY 83, KTY 84, 2- or 3-wire connection, line-resistance max. $3 \times 50 \Omega$ B, E, J, K, L, N, R, S, T
	Measuring time DC Measuring time AC Measuring time temperature + Resistance	$\begin{aligned} & <300 \mathrm{~ms} \times \varnothing \\ & <700 \mathrm{~ms}+300 \mathrm{~ms} \times \varnothing \\ & <600 \mathrm{~ms} \text { (3-wire + thermocouple) } \\ & <300 \mathrm{~ms} \text { (2-wire) } \end{aligned}$
Output	Relay output Analog output Supply-voltage for loop-powered measuring transducer and analog output	Typ 2, see "general technical informations" 2×1 change-over) contanct 4-20 mA (insulated when externally supplied) DC $15-20 \mathrm{~V} / 25 \mathrm{~mA}$
Accuracy	Resolution Error DC (of FullScale) Error AC (of FullScale) Error resistance (of value) Error Pt 100 (of value)	$\begin{aligned} & -1999 /+9999 \\ & \pm 0,1 \% \pm 1 \text { Digit } \pm 0,02 \% \mathrm{~K} \\ & \pm 0,5 \% \pm 1 \text { Digit } \pm 0,05 \% \mathrm{~K} \\ & 500 \Omega: 0,2 \% \pm 0,5 \Omega \\ & 30 \mathrm{k} \Omega: 0,5 \% \pm 2 \Omega \\ & \pm 0,2 \% \pm 0,5 \mathrm{~K} \pm 0,04{ }^{\circ} \mathrm{C} / \mathrm{K} \end{aligned}$
Housing	Dimensions ($\mathrm{h} \times \mathrm{w} \times \mathrm{d}$) mm Attachment	panel-mount housing $48 \times 96 \times 100 \mathrm{~mm}$ panel-mount, panel cutout $45^{+0,6} \times 92^{+0,8} \mathrm{~mm}$ max. thickness of panel: 8 mm
	Rated ambient temperaturerange	
	Protection housing Protection terminals Weight	front-side IP 54, back-side IP 20 IP 20 approx. 240 g

Switching Relays and Controls

Controls for Suction Plants Type STW 136
Speed-Relays Type FR 149
Level-Relays Type NS 151
for conductive liquids
Twilight Switches Type DS 160
Power Supplies Type NG 162
Watchdog-Time-Relays Type WD 163

Controls for Suction-plants
 for Dust, Sawdust, Shaving and Smoke

General

ZIEHL controls STW are designed to control suction plants especially in carpentry and woodprocessing industry.
They are mounted centrally in the switchgear-cabinet. They monitor the current to the machines with help of transformers STWA1 or STWA1H and thus detect, when a machine is switched on. When used in systems with welding-fume, the DC-currents are detected with current-sensors S1.
Simple switch-on automats (STW1K, STW12V) start dedu-
sting when at least one of the monitored machines is switched on and stop dedusting with a delay after the last machine has been switched off.
Devices with integrated control ofslide-valves (STW81V, STW84V) make sure that full advantage is taken from the available dedusting-capacity.
Multiple STW84V can be combined for controlling greater plants.
In addition STW84V can control a frequency-converter at the motor of the fan and thus optimize dedusting and save energy.
When PLCs are used for controlling the dedusting plant, electronic current-transmitters STWA 1 S can detect, if a machine is switched on. They can be directly connected to digital inputs of PLCs.

Overview

Typ	STW1K	STW12V	STW81V	STW84V	STWA1S/SEH	Sensor S1
Number of monitored machines	8	12	8	8	1	1
Imputs for Transformers STWA 1	STWA1	STWA1	STWA1	STWA1	-	-
Current Sensor S1	S1	S1	S1	S1	-	-
Potential-free contact	-	Contact	Contact	Contact	-	-
Operating value	$\leq 1 \mathrm{~A}$	0,5-5 A	$\leq 1 \mathrm{~A}$	0,5-5 A	$2 \mathrm{~A} / 2-10 \mathrm{~A}$	5/5-30 A
Control of valves	-	-	X	X	-	-
Relay outputs	1 U	1 U	$8+1$ U	$8+3 \mathrm{U}$	Transistor	Transistor
Control of minimum volume-flow	-	-	-	X	-	-
Control of filter-cleaning	-	-	-	X	-	-
Control of discharge	-	-	x	-	-	-
Monitoring of max. volume flow	-	-	-	X	-	-

Function and Characteristics

When there is a current through a current-transformer STWA 1, the input of the control can measure a voltage at the output of the STWA 1. This voltage is evaluated and according actions are performed by the device.
This simple principle to detect current yes/no allows to realize various functions at a reasonable price.
The state (on/off) of a consumer outside the switchgear-cabinet can be detected without needing a signal from the consumer. This saves cabling.

At currents $<1 \mathrm{~A}$, the necessary current for reaching the operating-value of the input of the control can be reduced by leading the monitored wire multiple times through the transformer STWA 1.

Current-Relay STW1K
 AC-Detection, OR-Evaluation of 1-8 Transformers

STW1K

Technical Data

Current relay in OR evaluation with 8 inputs, designed e.g. for controlling of suction plants in the timber and plastics processing industry.
When there is an AC-current >1 A through one of up to 8 connected transformers STWA1, the integrated relay (1co) picks up. When all currents are 0 , the relay releases with a delay of approx. 10s. This enables a run-after of the central suction.

- 8 inputs
- OR-evaluation
- relay picks up if at least 1 input is activated
- operating value approx. 1 A
- turn-off delay approx. 10 s
- not necessary inputs remain open
- options:
- switch-on delay 3 s
- without switch-off delay

Rated supply voltage Us

Transformer input
Overload cap.continous/max 10s
Function
Switching point on
Switching point off
Switch-off delay
Switch-on delay
Output relay
Type of contact
Test conditions
Rated ambient temperature range

Dimensions (h x w x d)
Attachment
Protection housing / terminals Weight

Order-number:
AC 220-240 V
S225636

AC 220-240V+10-15\%, < $3 \mathrm{VA}, 50 / 60 \mathrm{~Hz}$
1...8, type STWA , order-number S225201

100 A / 300 A
OR-evaluation
$\leq A C 1$ A
> AC 0,3 A
approx. 10 sec .
approx. $0,5 \mathrm{sec}$.
1 change-over contact (co)
type 2, see "general technical informations" see "general technical informations"
$-20^{\circ} \mathrm{C} \ldots+55^{\circ} \mathrm{C}$

Design K: $75 \times 22.5 \times 115$ [mm]
on 35 mm DIN rail according to DIN EN 60715 or with screws M4 (option)
IP 30 / IP 20
approx. 140 g

Current-Relay STW12V
 Current-Detection, OR-Evaluation, 12 Inputs, adjustable

STW12V

Current relays in OR evaluation with 12 inputs, designed e.g. for controlling of suction plants in the timber and plastics processing industry.
Recording of current is made with current transformers type STWA 1, current-sensors S 1 (DC also) or potential-free contacts.
When there is anAC-current higher than the set response value (setting range $0.5-5 A$) through at least one of the connected transformers, the integrated relay (1 NO) picks up. If all monitored circuits are switched off or the current falls below the set response value by approx. 0.3 A , the output relay releases after the set time delay (1-60).
Due to the adjustable response value, the user can permit lower currents without releasing switchings. Thus, for example, a machine can be switched on in order to adjust its electronic settings (low current via transformers). The STW will only switch on when the main motor has been put into operation (high current). Due to the adjustable switch off delay an easy adjustment of the follow-on is possible.

- Current monitoring of up to 12 currents
- Inputsforcurrenttransformers STWA 1, current-sensors S 1 or potential-free contacts
- Adjustable switching point 0.5-5 A

Supply voltageUs

Relay output
Type of contact
Test conditions
Rated amb. temperature range
Function
Measuring inputs
Overload cap./continous max 10s
Switching point
Tolerance
Switch-off delay
Switch-on delay
Dimensions (H x W x D)
Attachment
Protection housing/terminals
Weight

- Adjustable switch off delay (1-60 s)
- Plug-in terminals
- Universal supply-voltage AC/DC $24-240 \mathrm{~V}$
- Housing for mounting in switchgear cabinets or fuseboxes, 70 mm wide, mounting height 55 mm

Application:

ZIEHL current monitors in OR-circuits can be used particularly where dust, fumes and gases are generated by various electrical devices, and where these must be extracted by a central suction system. Due to the integrated delaytime the follow-on of the suction is controlled.

Order-number
AC/DC 24-240 V

> S225519

AC/DC 24-240 V, < 3 W, < $5 \mathrm{VA}, 50 / 60 \mathrm{~Hz}$ AC 20-264 V, DC 20,4-297V

1 change-over contact (co)
type 2 see "general technical informations" siehe "general technical informations"
$-20^{\circ} \mathrm{C} \ldots+55^{\circ} \mathrm{C}$
OR-evaluation
12 x for current transmitters STWA 1, current-sensors
S 1 or potential-free contacts
100 A / 300 A
with STWA 1 adjustable, AC 0,5-5 A
$\pm 20 \%$
adjustable 1-60 s
app. 0,5 s
design V4: $90 \times 70 \times 58$ [mm], mounting height 55 mm on 35 mm DIN-rail according to EN 60715 or
with screws M4
IP 30 / IP 20
app. 200 g

Current relay STW81V
 8-channel, single evaluation + OR-circuit

The current relay STW81V is an 8-channel AC current relay, designed for controlling of suction plants e.g. in the timber and plastics processing industry. When there is an AC-current $>1 \mathrm{~A}$ through one of up to 8 connected transformers type STWA1, the appropriate relay K1...K8 (1 x co) picks up and opens the slide valve of the machine. At the same time the relay K9 starts the central suction.

Technical Data

Rated supply voltage Us

Output relay
Type of contact
Test conditions
Rated ambient temperature range

Transformer input
Function
Overload cap. continuous max.
10 s
Switching point on
Switching point off
Switch-on delay
Switch-off delay
Dimensions ($\mathrm{h} \times \mathrm{w} \times \mathrm{d}$)
Attachment
Protection housing / terminals Weight

Relays K1...K8 switch off 10s after the current flow through the appropriate transformer is 0 . K9 switches off $0 . . .60$ s (adjustable) after the current in all transformers is 0 .

Application:

The current relay STW81V is particularly suitable for the central control of slide valves in suction plants, which are to be operated dependent on operating condition of individual machines. It can control a central suction at the same time.

- single evaluation of 8 inputs with STWA1
- single evaluation of 8 inputs with current-sensor S1
- inputs for 8 potential-free contacts
- OR-evaluation of all circuits (K9)
- 9 output relays
- LED display for relays / inputs
- switch-off delay of K9 adjustable 0-60 seconds
- switch-off delay single relays 10 s
- last relay: K9 + 20 s
- Power consumption < 1W (in standard-operation with STWA1)

Order-numbers:
AC/DC 90-240 V
S225516

AC/DC 90-240 V, 0/50/60 Hz, < $4 \mathrm{~W},<8 \mathrm{VA}$
DC: 76,5 ... 297 V, AC: 76,5 ... 264 V
$8+1$ change-over contacts (co)
type 2 see "general technical informations"
see "general technical informations"
$-20^{\circ} \mathrm{C} . . .+55^{\circ} \mathrm{C}$
1... 8 type STWA1, or STWA1H
single/OR-circuit
100 A / 300 A
$\leq \mathrm{AC} 1 \mathrm{~A}$
$>$ AC 0,3 A
approx. 0,5s
$10 \mathrm{~s} / 0-60 \mathrm{~s}$
design V $8 / 90 \times 140 \times 58[m m]$
on 35 mm DIN rail according to DIN EN 50022 or with screws M4 (option)
IP 30 / IP 20
approx. 330 g

Control for Suction Plants STW84V
 with integrated control for dedusting of filters and volume flow

The current relay STW84V monitors up to 8 alternating current sets on current flow yes/no. The inputs can analyse signals of current transformers type STWA1 or of potential-free contacts.
For controlling of great dedusting plants several relays can be combined.

Applications: Controlling of dedusting plants in the timber and plastic processing industry ac-
cording to the technical rules for dangerous materials TRGS 553.
The central suction is switched on, as soon as any machine is put into operation. According slide valves in the suction ducts of the individual machines are opened. In addition, cleaning of a filter (vibration) and a cellular wheel/discharge can be controlled, an external cleaning (with compressed air) can be startet or exceeding of max. volume flow can be reported.

The analog output $0 \ldots 10 \mathrm{~V}$ can control a frequencyconverter at the motor of the ventilator and thus optimize performance and save energy.

Function and Characteristics

Description:

- Monitoring of 8 machines (STWA1 or contact)
- input for "open all slide valves"
- 8 relays (with change-over contacts) for slide valves
- 1 relay for control ventilator
- 1 relay for filter-cleaning
- 1 relay for control of cellular wheel/ discharge or report exceeding max.. volume flow
- analog output for control of frequency-converter and combination of more STW
- terminals plugable
- Universal supply voltage AC/DC 24-240 V

Functions/adjustments:

- run-after last slide valve $0 .$. . 99 s
- turn-off delay ventilator $0 . . .99 \mathrm{~s}$
- minimum volume flow $1 . .$. 100%, (if necessary automatic opening of additional slide valves, beginning with K8)
- maximum volume flow 5 ... 100\%

Individually adjustable per channel:

- turn-on delay 11... 18: $0 . . .20 \mathrm{~s}$
- turn-off delay relay K1...K8: 0... 99 s

power supply
28 outputs for slide-valves
(16, 26...86=close, 18, 28...88=open
3 suction ON
4 max. volume-flow exceeded/option
5 inputs for current transformers STWA 1

6 open all slide valves
7 external dedusting command
8 dedusting/option
9 analog input
10 control of suction power

- operating value I1...I8: app. 0.5... 5A
- volume flow of slide valves $1 . . .100 \%$

Combination of more STW:
Master-relay considers volume-flow of other relays for:

- control of ventilator (relay K9 and analog output $0-10 \mathrm{~V}$)
- opening of additional slide valves
- adding time for filter-cleaning
- report of exceeding max. volume flow

Control of cleaning of filters:
The run time of the ventilator is added with consideration of the volume flow. The dedusting of the filters is started after achieving the programmed run time (only with switched off ventilation).

- time for addition: 0... 99 min .
- added time stored permanently even at loss of power (power failure or upon completion of work)
- delay before start of cleaning: $0 . . .990 \mathrm{~s}$
- number of dedusting impulses: 0... 20
- impulse on-time: $1 . . .30 \mathrm{~s}$
- impulse off-time: 1... 990 s
- time of continous dedusting: 0... 990 s
- alternatively impulse shaking $0.1 \ldots 9.9 \mathrm{~s}$ (square)
- alternatively dedusting request (with running suction)
- input for external dedusting command
- controlling a cellular wheel / discharge during dedusting

Displays and operation:

- 7-segment-display for settings during programming, in operation display of the volume flow
- 8 LEDs for input/output selection and display of the active inputs/outputs
- 9 LEDS for function selection
- easy programming

Technical Data STW84V

Power Supply
Relay output
Test conditions

Inputs

Command inputs

Voltage output +U
Command inputs
rated supply voltage Us
Voltage tolerance
Power consumption
Frequency

Contact elements
Type of contact
(see with " general information " under relays)
rated insulation voltage Ut
Pollution degree
rated impulse voltageelement
EMC - interference transmission
EMC - interference resistance
rated ambient temperature range

Overload cap. continuous/max.10s
Current overload capacity
Operating value
Tolerance

Y2, external deducting command I1\&I8, command all valves open internal resistance of inputs

Design

Dimensions ($\mathrm{h} \times \mathrm{w} \times \mathrm{d}$) mm Wire connections

Installation position
Attachment
Housing protection
Terminal protection
Vibration resistance
Shock resistance

Weight

Housing

Installation position
Attachment
Housing protection
Terminal protection
Vibration resistance
Shock resistance
Weight

AC/DC 24-240 V
+10...-15\%
< 12 VA
$50 / 60 \mathrm{~Hz}$

11 change-over contacts (co)
type 3
max. 5 A/ 1250 VA

EN 61010
Vi 250 V
2
4000 V
EN 61326-1 CISPR 11 class B
EN 61326-1 (industrial surrounding)
$-20^{\circ} \mathrm{C} \ldots+45^{\circ} \mathrm{C}$

DC $17-21 \mathrm{~V}$
max. 120 m A at Us $=230 \mathrm{~V}$ (max. 8 Current sensors S1)
max. 10 mA at Us $=24 \mathrm{~V}(0$ sensors S 1$)$
1... 8 STWA 1, floating contact or AC/DC 24 V , STWA 1 H or current-sensor S1
100 A/300 A
ca. $15 \mathrm{k} \Omega$
adjustable 0.5... 5 A
$\pm 20 \%$

+ DC 24 V
+ DC 24 V
approx. $15 \mathrm{k} \Omega$

V 8 (installation)
$90 \times 140 \times 58 \mathrm{~mm}$, mounting height 55 mm
$1 \times 1.5 \mathrm{~mm}^{2}$ for each pole
any
on 35 mm DIN rail or M4 screws
IP 30
IP 20
1 mm 25 cycles per second /
$10 \mathrm{~g} \mathrm{25-100} \mathrm{cycles} \mathrm{per} \mathrm{second} \mathrm{of}$
10 g 20 ms
20 g 4 ms
approx. 350 g

Stromwandler Typ STWA1
 für $A C$ Stromerkennungsrelais

Art.-no: S225201

Current-transformers STWA1H can be fixed on a 35 mm DIN-rail or with 2 screws.
The electrical connection is made via pluggable terminals.
The cables are led vertical through the transformer (right angle to 35 mm -rail). The available diameter is 11 mm .

The STWA1 current transformer is made to match the STW current monitor. One current transformer is required for each line being monitored. The STWA1 consists of a climate-proven sealed-in coil with toroidal tape core. The connection cables are permanently fixed to the transformer and are 1 m in length. The level of the current to be monitored is limited to 100 A continously, 300 A for max. 10s.

In case of current of more than approx. 5 A , an LED can be triggered directly via the STWA1 current transformer. Thus it's easy for users to visually monitor the current conduction in a line. The LED is protected by an anti-parallel diode or by its connection in series. A protective resistor is necessary depending on the LED used or the level of current being monitored.

Weight: app. 43 g

Current Transformer

 STWA1H for DIN-rail-mount or screw-mount

Art.-no: S225506

A built-in LED lights up at currents > app. 2 A . Even short current pulses are visible.
ZIEHL current monitor type STW or an external LED can be conntected to the terminals. The built-in resistor protects the LED from overload.
The STWA 1 H can also be used to visualize currentflow in stand-alone mode, without connecting it to a current monitor.

Weight: app. 90 g

1 Unterteil
2 Tragschienenhalter (abnehmbar)
3 Anschlussklemme (steckbar)
4 Wandbefestigung (M4)

AC-Electronic Current Transformer STWA1S

 with transistor-output
STWA1S

Electronic current transformer
with fixed switching-point

Dimension illustrations

The STWA1S has an integrated electronic with transistor-output. The switching point is 2 A . Above app. 2 A the output transistor is switched on (LOW), below app. 1.5 A it is off (HIGH).

The conductor is simply pushed through the transformer.Multiple loops reduce the switching point correspondingly, for instance to 0.5 A with four loops. A supply voltage is not required.

Application: The STWA1S is used where current flow is to be detected, with the exact value of the current either known from the power consumption of the connected consumer or does not
Switching point at $\mathrm{Tu}=25^{\circ} \mathrm{C}$
Switching-back Point
Repeat accuracy
Temperature dependence
Overload cap. continous / 10s
Output voltage/current max.
Voltage drop (ON)
Leak current (OFF)
Switch-on /switch-off delay
nominal frequency/ operating range
error
rated ambient temperature range

Housing
Dimensions ($\varnothing \times H$)
Diameter for conductor Weight
matter for the evaluation.
For simultaneous evaluation of the currentflow in several conductors the STWA1S device can be connected in series (AND circuit, pay attention to the voltage drop) or in parallel (OR circuit, pay attention to the leak current).

- isolated transistor-output max. DC $40 \mathrm{~V} / 40 \mathrm{~mA}$
- output can be directly connected to the digital input of a PLC
- integrated diode for reverse voltage protection
- 2-wire-connection, 1 m
- no supply voltage required
- transformer and electronic unit enapsulated in a climate-proof housing
- plug-in current transformer ($\varnothing 11 \mathrm{~mm}$)
- max. overload 100 A continously, 300 A / 10 s

Order-number
S225195

AC $2 \mathrm{~A} \pm 25 \%$
AC $1,5 \mathrm{~A} \pm 25 \%$
$\pm 5 \%$
< 0,06\%/K
100 A / 300 A
DC $40 \mathrm{~V} / 40 \mathrm{~mA}$ max. 3 V max. 0,6 mA app. $50 / 200 \mathrm{~ms}$
$50 \mathrm{~Hz} / 30 \ldots 70 \mathrm{~Hz}$
$\leq 1 \% / \mathrm{Hz}$
$0 . .55^{\circ} \mathrm{C}$

Design S
$34,5 \times 27 \mathrm{~mm}$
11 mm
app. 60 g

AC-Electronic Current Transformer STWA1SH

2 A , with transistor-output

STWA1SH

Electronic Current Transformer with fixed switching point

The STWA1SH has an integrated electronic with transistor-output. The switching point is 2 A . Above app. 2 A the output transistor is switched on below app. 1.5 A it is off.
The conductor is simply pushed through the transformer.Multiple loops reduce the switching point correspondingly, for instance to 0.5 A with four loops. A supply voltage is not required.

Application: The STWA1SH is used where current flow is to be detected, with the exact value of the current either known from the power consumption of the connected consumer or does not
matter for the evaluation.
Forsimultaneous evaluation of the current flow in several conductors the STWA1S device can be connected in series (AND circuit, pay attention to the voltage drop) or in parallel (OR circuit, pay attention to the leak current).

- isolated transistor-output max. DC $40 \mathrm{~V} / 40 \mathrm{~mA}$
- output can be directly connected to the digital input of a PLC
- integrated diode for reverse voltage protection
- electrical connection via screwless pluggable terminals
- no supply voltage required
- DIN-rail-mount or with screws
- plug-in current transformer ($\varnothing 11 \mathrm{~mm}$)
- max. overload 100 A continously, 300 A/ 10 s

Order-number
S225550

AC $2 \mathrm{~A} \pm 25 \%$
AC $1,5 \mathrm{~A} \pm 25 \%$
$\pm 5 \%$
< 0,5\%/K
100 A / 300 A
DC $40 \mathrm{~V} / 40 \mathrm{~mA}$ max. 1 V app. $50 / 200 \mathrm{~ms}$

50 Hz
$30 . . .70 \mathrm{~Hz}$
$\leq 1 \% / \mathrm{Hz}$
$0 . . .50^{\circ} \mathrm{C}$

Design H
$50 \times 36 \times 56 \mathrm{~mm}$
11 mm

app. 90 g

Dimension illustrations

Housing
2 Clip for DIN-rail (removeable)
3 Terminal (pluggable)
4 Wall-mounting (M4)

AC-Electronic Current Transformer STWA1SEH

adjustable $2 \ldots 10 \mathrm{~A}$, with transistor-output

STWA1SEH

Electronic current transformer with fixed switching-point 2... 10 A

The STWA1SEH has an integrated electronic with transistoroutput.
The switching point is adjustable 2-10A. Above switching-point the output transistor is switched on, below it is off.
The conductor is simply pushed through the transformer.Multiple loops reduce the switching point correspondingly, for instance to $0.5-2,5$ A with four loops. A supply voltage is not required.
For monitoring of higher currents, the STWA1SEH is simply looped into the secondary current of big current transformers.

Switching point at $\mathrm{Tu}=25^{\circ} \mathrm{C}$ Hyseteresis
Repeat accuracy
Temperature dependence
Overload cap. continous / 10s
Output voltage/current max.
Voltage drop (ON)
Leak current (OFF)
Switch-on /switch-off delay
nominal frequency
operating range
error
rated ambient temperature range

Housing
Dimensions (h x w x d) Diameter for conductor Weight

Application: The STWA1SE is used where AC current flow is to be detected in a conductor, e.g. to give a warning if a defined current value is exceeded or not reached, or to switch off a machine or to simply report the current flow.

- adjustable switching limit 2... 10 A
- isolated transistor-output max. DC $40 \mathrm{~V} / 40 \mathrm{~mA}$
- output can be directly connected to the digital input of a PLC
- LED for display state of output
- integrated diode for reverse voltage protection
- electrical connection via screwless pluggable terminals
- no supply voltage required
- plug-in current transformer ($\varnothing 11 \mathrm{~mm}$)
- max. overload 100 A continously, 300 A / 10 s

Order-number S225550

AC $2 . . .10 \mathrm{~A} \pm 25 \%$
5... 30 \%
± 2 \%
< 0,06\%/K
100 A / 300 A
DC $40 \mathrm{~V} / 40 \mathrm{~mA}$ max. 3 V max. 0,6 mA $0,2 \ldots 2 \mathrm{~s} / \leq 0,3 \mathrm{~s}$

50 Hz
$30 . . .70 \mathrm{~Hz}$
$\leq 3 \% / \mathrm{Hz}$
$-20 \ldots+50^{\circ} \mathrm{C}$

Design H
$50 \times 36 \times 56 \mathrm{~mm}$ 11 mm
app. 90 g

Dimension illustrations

1 Housing
2 Clip for DIN-rail (removeable)
3 Terminal (pluggable)
4 Wall-mounting (M4)

Current Sensor for AC- and DC-Currents

Put-on sensor with transistor-output

Current Sensor S1 for AC- und DC-Ströme

The current sensor S1 records the current in a cable with a hallsensor. At currents of adjustable 5-30 A the transistor-outputs switch and report a current in the monitored cable.
The current sensor can be fixed with a cable fastener (apply to only 1 cable). Thus it can be mounted subsequently without disconnecting the cable.
As supply-voltage DC 24 V are required (e.g. ZIEHL-powersupply NG 4 V).

The current sensor can be connected to ZIEHL current-relaysfor current detection yes/ no ant to ZIEHL controls for dedusting plants. The connection to a digital input of a PLC also is possible.

Application:

Recording of welding currents (mounting at ground wire) for controlling dedusting plants in combination with ZIEHL-controls type STW.
Recording of the state of a consumer of electricity (on or off or defective).
In general the current sensor S 1 is used where the current flow is to be detected, with the exact value of the current either known from the power consumption of the connected consumer or does not matter for the evaluation. For evaluation of measuring data

Technical Data

in more than 1 cable,
the outputs of several current sensors can be connected in parallel (or-evaluation).

- switching point adjustable 5-30 A
- LED for current flow
- monitoring of AC and DC currents
- mounting without disconnection of cable possible
- 2 transistor-outputs, switching + and -
- direct connection to a PLC possible
- connection to current-relays ZIEHL type STW
- sturdy, sealed execution
- overload capacity: unlimited
- test-voltage $2,5 \mathrm{kV}$

Order-number:
Current Sensor S1, 5-30 A adjustable
S225694

DC $24 \mathrm{~V} \pm 20 \%, 12 \mathrm{~mA}$
adjustable AC/DC 5-30 A
$\pm 20 \%$
$\pm 2 \%$
typical $< \pm 0,2 \mathrm{~A} / \mathrm{K}, \max . \pm 0,45 \mathrm{~A} / \mathrm{K}$
$0 / 10 \ldots 400 \mathrm{~Hz}$
500 A / 1000 A
DC 24 V , + switching, max. 10 mA
DC 24 V , - switching, max. 10 mA
app. 300 ms
$0 . . .55^{\circ} \mathrm{C}$
$75 \times 16,5 \times 10 \mathrm{~mm}$
app. $2 \mathrm{~m}, 4 \times 0,34 \mathrm{~mm} 2$
e.g. with cable fastener (not included)
app. 150 g (cable included)

Vibrator Control Type RS1K

The vibrator control RS1K is a compact multiple time relay for triggering of vibrators in suction plants. In order to be able to operate suction plants at an optimum, the filters which get clogged by sawdust, chips or dust, have to be dedusted by vibration from

- Start of deceleration time by break contact at $\mathrm{Y} 1 / \mathrm{Z} 0$ (e.g. from contactor suction motor)
- Starting of deceleration time through current transformer STWA1 atZ0/Z1 (e.g. L1 from suction motor)
- adjustable deceleration time 1... 30 min .

Function diagram:

Technical Data

Rated Voltage Supply Us
Input Y1/Z0, Y2/Z0
Input Z1/Z0
Switching current
Overload Capacity of transformer

Relay-Output
Type of Contact
Test Conditions
adm. ambient temperature
Dimensions H x B x T
Fitting position
Protection Housing/Terminals
time to time. The vibration action is by no means to be carried out the suction running or while slowing down the ventilator. If suctioning is started during vibration, the process is immediately to be interrupted. Prior to starting the vibration action, an adjustable deceleration time is running to delay the ventilator before start of vibration. This means that short stoppages can be bypassed without being obliged to carry out a vibration every time.

- Relay K1: continous vibration 20 s or impulsevibration 18 s with 3 s clock
- Relay K2: impulse-vibration 40 s with clock $0,5 \mathrm{~s}$ or $0,8 \mathrm{~s}$ (for magnet valves)
- LED (red) signals deceleration time
- LED (green) signals vibration action
- automatic interruption of the vibration action when starting the suction process.

Order-number:
Z224302

AC/DC 24... $240 \mathrm{~V}, \mathrm{AC} 19-264 \mathrm{~V}$, DC 20-297 V < 2VA
Contact, Breaker (nc), $18 \mathrm{~V}, 3 \mathrm{~mA}$
Current Transformer STWA1
$O N \geq A C 1 A, O F F \leq A C 0,4 A$
max. 100 A continous, $300 \mathrm{~A} / 10 \mathrm{~s}$
2×1 co
Type 2 (see general technical informations)
see "general technical informations"
$-20 \ldots+55^{\circ} \mathrm{C}$
Design K: $75 \times 22,5 \times 115$ [mm]
on 35 mm standard rail according to DIN EN 60715 or screws M4 (not included in delivery scope) IP 30/IP 20

Vibrator Control RSP1

with Time addition

RSP1

ohne BR 1/2 \rightarrow kein Intervall-Rütteln		
T0 = Gesamtlaufzeit Absaugung T1 = Austrudelzeit T2 $=$ Intervall - Rütteln T3 = Intervall - Pause T4 $=$ Dauerrüttelzeit	$\begin{gathered} 4-120 \mathrm{~min} \\ 10-300 \mathrm{sec} \\ 1-30 \mathrm{sec} \\ 1 .-30 \mathrm{sec} \\ 10-300 \mathrm{sec} \end{gathered}$	
		10221211

The vibration control RSP1 is a compact multiple timing relay for capturing operation times of suction plants and for triggering vibrators.

It provides optimal control of the vibration device by collecting of operating times of up to 3 suctions

- addition of the running time of 1, 2 or 3 suctions.
- introduction of vibration procedure after having reached the set total time (adjustable 4 to 120 min .) and after completion of the last suction operation.
- external vibration command by closing a contact, e.g. by filter monitoring work
- spintime adjustable 10 to 300 sec .
- interval vibrations 5,15 or 20 times (disconnectable)
- interval vibration time (adjustable 1-30 sec.)
- interval break time (adjustable 1-30 sec.)
- continuous vibration (adjustable 10-300 sec.)
- no vibration during suction operation.
- if vibration procedure is interrupted (e.g. by switching on suction), the same will be recommenced at the next possible opportunity.

Technical Data

Supply voltage Us
Relay output
Contact type
Test Conditions max. ambient temperature

Inputs
Contact 6, 7, 8 against 5
Contact 1 against 4
Casing dimensions (W x H x D)
Protection housing/terminals Mounting

Weight
with variable programs for vibration procedures (spintime, interval-and permanent vibration) and programmable vibration periods. LED displays provide information about the operational state at any time.

All times are permanently saved in an EEPROM. Thus the accumulated operation period of the suction operation saved when switching off the supply voltage, e.g. during the night or weekend.

Features:

- inputs for up to 3 suctions.
- permanent saving of all times in the EEPROM.
- LED-display
- 2 pushbuttons for programming.
- coding switch for adjustment of all times
- RESET-button, resets operation period to zero or interrupts a running vibration procedure.
- VIBRATION-button, starts vibration procedure (only if suction is not active).

Order-number: Z224305

AC $220-240 \mathrm{~V}, \pm 10 \%, 50 / 60 \mathrm{~Hz},<3 \mathrm{VA}$

1 NO

type 2 see "general technical informations" see "general technical informations" $-20^{\circ} \mathrm{C} . . .+55^{\circ} \mathrm{C}$
approx. DC $24 \mathrm{~V} / 3 \mathrm{~mA}$
approx. DC $5 \mathrm{~V} / 5 \mathrm{~mA}$
Design S 12: $41.5 \times 82 \times 121$
IP 30/ IP 20
on 35 mm standard rail according to EN 60715 or with M4 screws.
approx. 300 g

Frequency- and Speed-Relay FRMU1000 with integrated Measuring-Transducer

The FRMU1000 is a speedmonitor, a frequency-monitor and a measuring-transducer in one device.
2 limits with 1 relay each can be programmed for under- or overspeed, under- or overfrequency or each monitoring of a range (min/max).
The input for monitoring of speed can evaluate signals from pro-ximity-sensors 2- or 3-wire, npnorpnp. The display can be scaled. Thus the real speed of a shaft can be displayed, even though there are several pulses per revolution, e.g. from a cogwheel.

Function

Application as Frequency-Relay:
Monitoring of frequencies in mains $162 / 3$ to 400 Hz on maintaining a range (min/max).

Application as Speed-Relay:

Monitoring of overspeed or underspeed, each with pre-alarm and alarm, monitoring of maintaining a range ($\mathrm{min} / \mathrm{max}$) or monitoring of stop at machines and equipment, e.g. at conveyors, escalators or lifts or for monitoring of drive-belts.

Application as Measuring-Transducer:
In addition, the FRMU can be used as measuringtransducer to convert the input-signal into a standardsignal 0/4-20 mA or 0-10 V.

Frequency:

- Measuring-inputs voltage AC 20-200 V/ 80-440 V oder AC 110-300 V/ 210-830 V (option)
- Monitoring of frequency of own supply-voltage
- Monitoring range $10-500 \mathrm{~Hz}$
- Resolution of display $0,01 \mathrm{~Hz}$

Speed:

Monitoring range

- 5... $99999 \mathrm{~min}^{-1}$

Display can be scaled

- Measuring-input for capacit-
- ance-switches 2- or 3-wire, npn or pnp
Start-up-delay programmable
- Start-input (activates device with switching on the monito-
- red drive)

General:
Setting in Hz or min^{-1} 5-digit display

- Analog output DC 0/4-20 mA,
- or DC 0-10 V, freely scaleable
- (with isolation to frequencyinput U1/U2)
2 limits/ 2 relays
Programmable for each relay:
- - Monitoring of min, max or
- range
- Hysteresis
- Autoreset reclosing lock
- Delay-time for switching and switching back down to 50 ms
- Operating- or closed-current mode

LEDs for state of relays and unit (Hz oder min ${ }^{-1}$)

- Storage of min- and max- values of the inputs
- Easy setting with 3 buttons
- Code lock against manipulation of settings
- Universal power supply AC/DC 24-240 V
- Terminals pluggable

Order-numbers:
without analog output FR1000
U226135
with analog output FRMU1000
Input 20-200 / 80-440 V
U226134
Input 110-300 / 210-830 V
U226138

Technical Data
FRMU1000
Rated supply voltage Us
Frequency
Measuring input Frequency
Admissible voltage
Measuring input Speed
Analog output
max. error
Relay output
Test conditions Rated ambient temperature range

Dimensions(h x w x d)
Protection housing / terminals Weight
Attachment

AC/DC 24-240 V, <3W, <10VA
(AC 20-264 V, DC 20,4-297 V)
$0,40 \ldots 500 \mathrm{~Hz},>$ AC $80 \mathrm{~V}: 10 \ldots 500 \mathrm{~Hz}$
$10.00-500.00 \mathrm{~Hz}$
AC $20-200 \mathrm{~V} / 80-440 \mathrm{~V}$
AC 110-300 V/ 210-830 V (option)
5-99999 min ${ }^{-1}$
PNP or NPN, 3-wire or 2-wire
0/4-20 mA, max. 500Ω,
0-10 V, max. 10 mA
$<0,15 \%$ from FullScale $+0,015 \% / K$
Type 3, see "general technical informations"
2×1 (change-over) contact
see "general technical informations"
$-20^{\circ} \mathrm{C} \ldots+60^{\circ} \mathrm{C}$
Design V4: $90 \times 70 \times 58 \mathrm{~mm}$, mounting height 55 mm IP 30/IP 20 (terminals pluggable)
app. 180 g
on 35 mm DIN rail or with screws M 4

Inductive Proximity Sensor IG2

Proximity-Sensorfor SpeedRelay FRMU1000.

- 3-wire-connection PNP brown =+, blue = -, black = A
- nickel-plated brass
- flush-mounting possible
- max. 48.000 IPM $(800 \mathrm{~Hz})$
- max. switching distance 4 mm (recommended $\leq 3 \mathrm{~mm}$)

Technical Data

Rated supply voltage Us Max. switching frequency Max. switching distance Factor of reduction Rated amb. temp. range

Housing
Material
Weight Dimensions Torque Connection Shock resistance Vibration resistance protection

Order-number IG2 Order-number cable

- Connection cable pluggable
- integrated protection against reverse polartity
- LED for state of output

Connection Cable

- Plug M 12, angled
- Length $5 \mathrm{~m}, 3 \times 0,34 \mathrm{sqmm}$
- PUR cable sheath

DC 10-30 V
$800 \mathrm{~Hz}=48000 \mathrm{Imp} / \mathrm{min}$
4 mm (recomm. $\leq 3 \mathrm{~mm}$)
Ms: 0,45, Al: 0,4, Cu: 0,3
$-25 \ldots+70$ degC
Threaded pipe M12x1
nickel-plated brass
app. 26 g
M 12×1 / length 50 mm
max. 10 Nm
threaded plug M 12
$\leq 30 \mathrm{~g}$, $\leq 11 \mathrm{~ms}$
$\leq 55 \mathrm{~Hz}, \leq 1 \mathrm{~mm}$
IP 67
U226003
U226004

Level Monitors Type NS

General

Function

Niveauelectrodes

Electrode NE1

Electrode NE2

The NS level monitor is an electronical device for monitoring liquid levels. They can be used as limit monitor or minimal-maximal control.
The monitoring of liquid levels is effected via electrodes.

The level capture is effected through resistance measurement via an AC voltage measuring path, operating completely DC voltage-free. Hereby, the resistance between two (resp. three) electrodes is measured.
When the level increases, the electrodes are bridged and an integrated relay switches.

The electrode NE2 with its $1 / 2$ " thread can directly be screwed into the wall of a tank. The two electrodes (stainless steel V4A) are flush cast in a plastic housing (Polypropylen, PP) with cast resin. The electrode can be used in a temperature-range $-5 \ldots 105^{\circ} \mathrm{C}$ and is pressure-resistant up to 6 bar. The ingrained cable with 2 strands, each $0,25 \mathrm{~mm} 2$, is 2000 mm long, $\varnothing 4 \mathrm{~mm}$.

Application:
The NS units protect aggregates and plants against dry running, overflow, leakage damages and unnecessary lost of liquids. Characteristical applications are swimming pools, groundwater endangered buildings, oilfilled under-water-pumps as well as whereever a certain level should be maintained resp. dosed.

The level monitor operates as conductivity measuring device and guarantees a perfect level capture at a resistance of up to $250 \mathrm{k} \Omega$, measured between the electrodes. ZIEHL level monitors are also available with adjustable time delay in order to avoid a too high relay switching frequency in case of a moving water surface. As electrodes any conductors, that jut into the tank down to the required level, can be used. At metal tanks the wall of the tank can be used as basic electrode.

Insulated screw-in electrodes for mounting in walls of tanks. The electrodes are made of stainless steel (V2A), the material of the insulation is Teflon.

Order-number
V223430

For one level only one NE2 is sufficient. For use with a level-monitor for more levels, normally one NE2 per level is required.

Order-number
V223429

Filling level probe Type NS6123-6
 for measuring filling level of water and gasoil
 0-250 mbar, integrated measuring transducer

Art.-no.: V223470

Economy-priced probe with integrated measuring transducer for measuring filling level e.g. in tanks, cisterns or waters.
Connection to ZIEHL-Web-Relay TR800Web for monitoring and logging of filling levels. Alarms by emails when levels are reached, e.g. before tank is empty.

Monitoring and display of levels with Digital Panelmeters MINIPAN 352 or other devices with input 4-20 mA.
The probe for relative pressure is submersible. It is placed at the bottom of the tank and determines the level by measuring the hydrostatic pressure. The result
is transmitted via signal 4-20 mA (2 wire).
The cable (PUR) includes a pressure compensation capillary that compensates fluctuation of atmospheric pressure.

Applications:

- Gasoil, diesel, used oil
- Engine oil and lube oil (fresh)
- Rainwater in cisterns, basins and water levels in general

Standard probe NS6123-6 0-250 mbar, cable 6 m

Connection to Universal Web-Relay Type TR800Web

Scaling of TR800Web for water:

Sensor-Einstellungen										
	Sensor-	aktueller	Sensortyp	Leitungs	Skalierung				Einheit	
Nr.	-Name	Messwert		Kompensation	ein	Nullpunkt	Fullscale	Dez. Punkt		
	Pegelsonde	25.3 cm	$4 . .20 \mathrm{~mA}$ V	3-Leiter	\checkmark	0	2500	$x x^{\prime} \times$	cm	\checkmark

Water (density 1,0): $1 \mathrm{mbar}=1 \mathrm{~cm}$
$0 . . .250 \mathrm{mbar}$ correspond to level 250.0 cm

Scaling of TR800Web for oil:
Sensor-Einstellungen

Oil (density 0,82...0,95): $1 \mathrm{mbar}=1 /$ density cm
Example density 0,862: $1 \mathrm{mbar}=1,160 \mathrm{~cm}$
$0 \ldots 250 \mathrm{mbar}$ correspond to level 0,0... 290 cm
Density of liquid can be calculated by using signal of probe and measuring depth of immersion with a meter stick.

Technical Data

Input	0... 250 mbar ($0 . . .250 \mathrm{~cm}$ water; 0... 290 cm oil)
Output	$4 . . .20 \mathrm{~mA}$, 2-wire
Supply voltage	10... 30 V DC direct connection to TR800Web
Measuring cell	ceramic $\mathrm{Al}_{2} \mathrm{O}_{3}$, DMS bridge
Response time	50 ms
Error	< 1\% of FullScale
Thermal drift	< 0,05\% /K of span
Ambient temperature	$-10 \ldots+40^{\circ} \mathrm{C}$
Housing	stainless steel 1.4404 (316 L, V4A)
Weight of probe	ca. $0,2 \mathrm{~kg}$, without cable
Cable	PUR black, oil proofen with pressure compensation capillary
Applications	Gasoil, diesel, water
	not for petrol, kerosine not for use in zone EEx

Level Monitors Type NS1

1 Niveau, Wall-mount

This level monitor for two electrodes preferrably serves to the limit control, e.g. as overflow or running dry protection of a conducting liquid. The device is integrated in a shock-resistant plastic housing of the type 94 and can also be used for outside-resp. waterproof mounting according to its protection system IP 54.

The function of the relay is reversible (standard: releases, when E2 is reached) by changing of jumpers in the device. The sensitivity can be changed between $25 . . .250 \mathrm{kOhm}$ and the switching delay between $0,5 \ldots 10 \mathrm{~s}$.

Technical Data

Supply Voltage U_{s}
Adm. Tolerance U_{s}
Power Consumption
Frequency
Relays
Contact type
Pick up delay approx.
Release delay approx.
Text conditions
max. ambient temperature
Quantity Electrodes
Voltage at the Electrodes

Line capacity \quad| at $25 \mathrm{k} \Omega$ |
| :--- |
| at $150 \mathrm{k} \Omega$ |
| at $250 \mathrm{k} \Omega$ |

Dimensions ($\mathrm{H} \times \mathrm{B} \times \mathrm{T}$)
Fitting position
Protection housing/ terminals Weight

Order-number:
V223202

AC 230 V
+10\%...-15\%
$\leq 3 \mathrm{VA}$
$50 . . .60 \mathrm{~Hz}$
1 CO
Type 2 (see "General technical Informations")

0,5 s
0,5...10s adjustable
see "General technical Informations"
$-20^{\circ} \mathrm{C} . . .+55^{\circ} \mathrm{C}$
2
<AC 6 Veff
max. $100 \mathrm{nF}=$ approx. 500 m
max. $20 \mathrm{nF}=$ approx. 100 m
max. $10 \mathrm{nF}=$ approx. 50 m
Design I 94: $94 \times 94 \times 57 \mathrm{~mm}$
with screws
IP 54/ IP 20
approx. 310 g

Level Monitor Type NS20
 1 Level and MIN / MAX-Control

Technical Data

Lever-Relays NS20 for conductive liquids can be used as monitors for 1 Level and for controlling a level between 2 electrodes.

- 3 elektrodes for MIN/MAXcontrol
- 2 elektrodes (E2 open) as level-monitor
- Sensitivity adjustable $5 \mathrm{k} \Omega . . .250 \mathrm{k} \Omega$
- LED for state of relay
- Function of relay reversible (picks up or releases at top electrode)
- Switching-delay adjustable 0,1 ... 10 s
- Universal supply-voltage AC/ DC 24-240 V

Applications as level-monitor:
Protection from running dry or overflow, seal-monitoring of submersible pumps for leaks, detection of leaks.

Applications Min/Max:
Controlling a level between minimum (elektrode E2) and maximum (E3). As long as E3 is dry, a magnetic valve is opened (or a pump is running) and liquid is influenting.As soon as maximum (E3) is reached, the NS 20 closes the valve. When the level falls below E2, the cycle starts new. In reverse also discharging of a container can be controlled.

Supply voltage U_{s}

Relay
Contact Switching delay

Test conditions
Rated ambient temperature range

Number of electrodes
Voltage at electrodes

Line capacity	at $5 \mathrm{k} \Omega$
	at $150 \mathrm{k} \Omega$
	at $250 \mathrm{k} \Omega$

Dimensions (h x w x d) mm Attachment
Protection housing/terminals Weight

Order-number V223440

Überwachung Flüssigkeitsstand mit 1 Elektrode (E3 benetzt, Relais an 15-18 geschlossen)
monitoring of liquid with 1 electrode (E3 dipped, relay on 15-18 closed)

Zulaufsteuerung mit 2 Elektroden (E3 benetzt, Relais aus 15-16 geschlossen) filling tank with 2 electrodes (E3 dipped, relay off 15-16 closed)

AC/DC 24-240 V, 0/50/60 Hz, <2W, <3VA (DC 20,4-297 V, AC 20-264 V)

1 change-over-contact (co)
type 2 see "general technical information" adjustable $0,1 \ldots 10 \mathrm{~s}$
see "general technical information" $-20^{\circ} \mathrm{C} \ldots+55^{\circ} \mathrm{C}$

2 or 3 (with 2 electrodes: E2 not connected)
< AC 6 Veff
max. $500 \mathrm{nF}=$ app. 2500 m
$\max .20 \mathrm{nF}=$ app. 100 m
$\max .10 \mathrm{nF}=$ app. 50 m
design V2: $90 \times 35 \times 58 \mathrm{~mm}$, mounting height 55 mm on 35 mm DIN-rail or with screws M4
IP 30/ IP 20
app. 100 g

Level Monitor Type NS20K

1 Level and MIN / MAX-Control

Level-Relays NS20 can be used for monitoring 1 level and as MIN/ MAX-Control.

- 3 elektrodes for MIN/MAXcontrol
- 2 elektrodes (E2 open) as level-monitor
- Sensitivity adjustable $5 \mathrm{k} \Omega . . .250 \mathrm{k} \Omega$
- LED for state of relay Function of relay reversible
- (picks up or releases at top electrode)
Switching-delay adjustable
- 0,1 ... 10 s

Application as level-monitor: Protection from running dry or overflow, seal-monitoring of submersible pumps for leaks, detection of leaks.

Application Min/Max: Controlling a level between minimum (elektrode E2) and maximum (E3). As long as E3 is dry, a magnetic valve is opened (or a pump is running) and liquid is influenting. As soon as maximum (E3) is reached, the NS 20 closes the valve. When the level falls below E2, the cycle starts new.
In reverse also discharging of a container can be controlled.

Technical Data

Supply voltage Us

Relay
Contact
Switching delay
Test conditions
Rated ambient temperature range

Number of electrodes
Voltage at electrodes

Line capacity	at $5 \mathrm{k} \Omega$
	at $150 \mathrm{k} \Omega$
	at $250 \mathrm{k} \Omega$

Dimensions (h x w x d) mm
Attachment
Protection housing/terminals Weight

Order-number: V223445

Zulaufsteuerung mit 2 Elektroden (E3 benetzt, Relais aus 15-16 geschlossen) filling tank with 2 electrodes (E3 dipped, relay off 15-16 closed)

AC/DC 24-240 V, 0/50/60 Hz, <2W, <3VA (DC 20,4-297 V, AC 20-264 V)

1 change-over-contact (co)
type 2 see "general technical information" adjustable $0,1 \ldots 10 \mathrm{~s}$
see "general technical information" $-20^{\circ} \mathrm{C} \ldots+55^{\circ} \mathrm{C}$

2 or 3 (with 2 electrodes: E2 not connected) < AC 6 Veff
max. $500 \mathrm{nF}=$ app. 2500 m
max. $20 \mathrm{nF}=$ app. 100 m
max. $10 \mathrm{nF}=$ app. 50 m
Design K: $75 \times 22,5 \times 115 \mathrm{~mm}$
on 35 mm DIN-rail or screws M4
IP 30/ IP 20
approx. 100 g

Level Monitors Type NS43

MIN/MAX-Regulation, protection from overflow and unlubricated operation

NS43

Technical Data

The level monitor NS43 regulates the level of liquid in a container between 2 electrodes. In the normal operation the level of the liquid is situated between the electrodes E2 and E3. The relay K2 tightens, if the level E3 is achieved and drops, if E 2 is fallen below. Over the output contacts (1 change-over switch) a pump or a valve can be controlled depending upon case of application and so the level be
regulated. If the level continues to rise in an incident and if the electrode achieves E4, then a message takes place via relay K3 (drops). In the reverse case (level underE1) the relay K1 drops and protects e.g. a pump against running dry.
LEDS signal, which electrodes are moistened.

Supply voltage U_{s}
Admissible tolerance U_{s}
Power consumption
Frequency
Relay
Contact
Pick up delay
Release delay
Test conditions
Rated ambient temperature range

Number of electrodes
Voltage at electrodes
Line capacity at $5 \mathrm{k} \Omega$
at $25 \mathrm{k} \Omega$
at $250 \mathrm{k} \Omega$
Dimensions ($\mathrm{h} \times \mathrm{w} \times \mathrm{d}$) mm
Attachment
Protection housing/terminals Weight

- Level monitoring of leading liquids
- MIN/MAX level regulation
- protection from overflow
- protection from running dry
- sensitivity adjustable 5... 250 k?
- LED for level display / alarm

Application:
In the galvanotechnics and everywhere, where the level of a leading liquid must be held on a certain level and at the same time a monitoring on overflow and/or no-load operation is necessary.

Order-number:
V223267

AC/DC $24-240 \mathrm{~V}$
AC 20-264 V, DC 20-297 V
$\leq 5 \mathrm{VA},<3 \mathrm{~W}$
$0,45-62 \mathrm{~Hz}$
3 CO
Type 2 see "general technical information"
approx. 1 s
approx. 1 s
see "general technical information"
$-20^{\circ} \mathrm{C} . . .+60^{\circ} \mathrm{C}$

5
$<A C 3 V_{\text {eff }}(\leq 0,1 \mathrm{~mA})$
max. $500 \mathrm{nF}=$ approx. 2500 m
max. $100 \mathrm{nF}=$ approx. 500 m
max. $10 \mathrm{nF}=$ approx. 50 m
Design K: $75 \times 22,5 \times 115 \mathrm{~mm}$
Snap mounting on 35 mm standard rail
IP 30/ IP 20
approx. 130 g

Level Monitor Type NS43V
 Switchgear-mount Housing

Function

The NS level monitor is an electronic device for monitoring levels of conductive liquids.
The monitoring of the levels is effected vis electrodes, which are dipped or set free according to liquid level.
All conductive liquids can be monitored, preferrably, however, water, also of different degree of hardness.

The NS unit protects aggregates and plants against dry running, overflow, leakage damages and unnecessary loss of liquids.
It controls and monitors levels of liquids in waste-water, pools, fish farms and whereever a certain level should be maintained or dosed.
Depending on the application and the set program, it controls the level between 2 or 3 electrodes by means of opening or closing dose or drain of a container. The top and the lowest electrode protect from overflow or running dry.

Supply voltage Us

Electrode connection max. voltage/current Sensitivity max. cable-length/capacity

Hysteresis
Switching delay
Relay output

Test conditions
Rated ambient temperature
Dimensions h x b x d
Attachment
Protection housing / terminals
Weight

To adapt the relay to the conductivity of the liquid and to the capacitance of (long) cables, the switching limit can be adjusted app. $5 \mathrm{k} \Omega \ldots 250 \mathrm{k} \Omega$. Thus it also is possible to tell between the liquid and foam over the liquid.

An electrolytic corrosion of the electrodes as well as detonating gas production is excluded due to a AC current measuring path.
The universal supply voltage AC/DC 24-240 V allows to connect the relay to any common mains. The isolation between electronics (= electrodes) and supply voltage avoids malfunctions caused by potential spreading, also at DC-supplys.

- Monitoring of up to 4 levels
- 4 relays with change-over contacts (co)
- Sensitivity adjustable $5 . . .250 \mathrm{k} \Omega$
- Switching delay of relays adjustable $0 . . .10 \mathrm{~s}$
- Switching-delay of alarms (on/off) adjustable $0 . . .10$ s
- Basic programs (selectable with DIP-switches) for various applications
- Universal supply voltage AC/DC 24-240 V
- Terminals pluggable
- Housing for DIN-rail or wall-mount, mounting height $55 \mathrm{~mm}, 70 \mathrm{~mm}$ wide

Order-number:
V223313

AC/DC 24-240V, <3W, <6VA AC 20-264 V, DC 20,4-297 V,

Level electrodes E1, E2, E3, E4, reference E0
<3Veff / <100 $\mu \mathrm{A}$
adjustable $5 \mathrm{k} \Omega . . .250 \mathrm{k} \Omega \pm 25 \%$
$5 \mathrm{k} \Omega /$ approx. $500 \mathrm{~m} / 100 \mathrm{nF}, 250$
$\mathrm{k} \Omega$ /approx. $50 \mathrm{~m} / 10 \mathrm{nF}$
approx. $15 \%+5 \mathrm{k} \Omega$
adjustable $0,1 \ldots 10 \mathrm{~s}$
Type 2 see "general technical informations"
4×1 changeover-contact
see "general technical informations"
$-20 \ldots+55^{\circ} \mathrm{C}$
Design V6: $90 \times 105 \times 58$ [mm], mounting height 55 mm On 35 mm DIN-rail or screws M4 IP 30 / IP 20 (terminals pluggable) approx. 250 g

Program 1
Control of dose or drain with 2 elektrodes with 2 more electrodes to protect from overflow and running dry.
The level swings between the 2 middle electrodes.
Standard-program for levelling a liquid in a container.

Program 2
Control of dose and drain between 2 electrodes with 2 more electrodes to protect from overflow and running dry. Depending on if speed of dose or drain is higher, the level swings around the upper or the lower of the 2 middle electrodes.

Program 4
Monitoring of 4 single levels with 4 electrodes.
Relay OFF when relevant electrode is dipped.
Program for controlling or monitoring of levels in 4 containers or for monitoring of up to 4 levels in 1 container.

Example for dosecontrol

Program 3
Control of dose and drain between 3 electrodes with 2 more electrodes to protect from overflow.
The level swings between electrodes E1 and E3. Dose and drain are switched on at E2 and off at E3 respectively E1.
Application e.g. in fishfarming.

Program 5
Monitoring of 4 single levels with 4 electrodes.
Relay ON when relevant electrode is dipped.
Program for controlling or monitoring of levels in 4 containers or for monitoring of up to 4 levels in 1 container.
E.G. monitoring of break of a pipe at 4 different points.

Twilight Switch
 Types DS6V and DS6

General

Designs

DS6V

The universally applicable twilight switches DS6 in combination with light-sensor LF 5 are reliable switching devices for street-, courtyard-, house-, stable- and showroom-window illumination. It monitors daylight or artificial light. The switching-limit is adjustable
between 10 and 100 LUX.
Switching illumination by means of a twilight switch is more economic than switching with a timer, because it is only switched on when it is really needed.
An adjustable switching-delay allows to suppress short changes in brightness, e.g. caused by the light of a car, shining on the sensor.

The DS6V is especially universal. It can be mounted on DIN-rail in cabinets or wall-mounted.
Variable possible settings allow a good adaptation to a variety of applications.
An adjustable switch-on-hold time can switch on an illumination, e.g. in a courtyard, in a showroom -window or at a christmas-tree, at twilight for a fiwed time, e.g. 6 hours. The light is automatically switched off after this time, an aditional timer is not necessary.

The 2 output-relay switch inverted. This means, taht at relay K1 the light is connected to the normally closed-contact (nc, terminal 12) and is automatically switched on at a failure.

The universal supply voltage AC/ DC24-240 V allows to connect the relay to any common mains.

- Switching limit adjustable app. 10... 100 LUX
- Hysteresis adjustable $5 . . .50 \%$
- Switching-delay on/off adjustable $0 . . .60 \mathrm{~s}$
- Switching-on-hold adjustable 0-12 hours
- 2 Relays, 1 co-contact each, with inverted functions
- Position ON/OFF for continous ON/OFF
- Position automatic 10... 100 LUX
- LEDs for Power ON, light on and hold
- Universal-power-supply AC/DC 24-240 V
- Housing for rail- or wall-mount,
- mounting height $55 \mathrm{~mm}, 70 \mathrm{~m} \mathrm{~m}$ wide
- Input for light-sensor LF 5

Order-number:
AC/DC 24-240 V
O223036
Please order light-sensor LF 5 extra.

The twilight-switch DS6 is mounted in a plastic-housing, protec-tion-class IP54. It is suited for mounting in moist atmosphere or outside.
The relay is connected in closed-current-mode. When the light at the sensor LF 5 falls below the limit, the relay releases and switches on the light. The illumniation is connedted to the normally closed-contact (nc, terminal 16).
At failures, e.g. disconnection of the sensoror loss of supply-voltage, the light is switched on.

- Switching-limit adjustable app. 10... 100 LUX
- Switching-delay adjustable 0,2... 10 s
- Relay 1 CO contact
- Housing protected IP 54
- Input for light-sensor LF 5

Light-Sensor LF5

Options:

- Operating-current mode, Relay picks up at darkness
- other supply-voltages
- especially current-saving execution DC 12-24 V
for applications in solar plants

The light-sensor LF5 can be connected to the twilightswitches DS6 and DS 6V. It is mounted in a hermetically sealed, weather-proof and uv-resistant plastic threadid pipe. The connection-cable is 1 m long.
If possible, the sensor should be mounted on the northside of a building to avoid direct exposure to the sun on summer days. Take care that street lamps, headlamps of cars or the light switched by the DS 6 itself has no disturbing influence on the function. Vertically positioning of the sensor directly upwards is therefore recommended.
To reduce the sensitivity and to shift switching-limits of the connected relays to higher values, filters can be mounted in front of the sensor (not included).

Order-number: O223105

DS6

AC 230 V
+10\%...-15\%
$\leq 3 \mathrm{VA}$
$50 . .60 \mathrm{~Hz}$
app. 10... 100 Lux adjustable

DS6V

AC/DC 24-240 V
$\pm 15 \%$
< 3 VA
0/50/60 Hz
app. 10-100 Lux adjustable 5-50\% $0,2 \ldots 10 \mathrm{~s}$ (ex works. 5 s) $0 . . .60 \mathrm{~s}$ adjustable 0-12 h

1 change-over (co) 2 co, 1 x inverted Type 2 see "general technical informations" see "general technical informations"

$-20^{\circ} \mathrm{C} \ldots+55^{\circ} \mathrm{C}$	$-20^{\circ} \mathrm{C} \ldots+55^{\circ} \mathrm{C}$
Design I 94: $94 \times 94 \times 57$	Design V4: $90 \times 70 \times 58$
IP 54/IP 20	IP 30/IP20
app. 320 g	app. 250 g

app. $9 \ldots 1 \mathrm{k} \Omega$, tolerance see characteristic Design M $14 \times 35 \mathrm{~mm}$
1 m (extension up to min. 50 m possible)
$-30 \ldots+80^{\circ} \mathrm{C}$

Technical Data
Power Supply

Relay-Output

Light-Sensor LF 5
Supply voltage Us Admissible tolerance Us Power consumption Frequency

Switching-on limit Hysteresis
Switching-delay
Switch-on-hold
Contact elements
Type of contact
Test conditions
Rated ambient temperature
Dimensions (h x w x d) mm
Protection housing / terminals
Weight
Resistance 10... 100 Lux
Sensor-housing
Connection-cable
Rated ambient temperature

Special executions and cable-lengths on request.

Power-Supply-Unit NG4V

forMeasuring-Transducers

Technical Data

With its universal power-supply the NG4V can be connected to supply-voltages AC/DC 24-240 V. The output supplies DC 24 V at 60 mA .

Applications of the NG4V are the supply of loop-powered (4-20 mA) measuring-transducers and the supply of small consumers which need DC 24 V , especially when an unusual voltage is available or a wide range of input-voltage is required.

Rated supply-voltage Us
Tolerance Us Power consumption

Output-voltage
Current capacity
Test conditions
Rated ambient temperature range

Dimensions ($\mathrm{h} \times \mathrm{wxd}$)
Weightt
Attachment
Protection housing/terminals

Order-number:
N223328

AC/DC 24-240 V
AC 19-264 V, DC $20-297 \mathrm{~V}$
$\leq 5 \mathrm{VA}$
DC 24 V max. 60 mA
stabilized
short-circuit-proof, max. current $<400 \mathrm{~mA}$
see "General technical informations" $-20^{\circ} \mathrm{C} \ldots+55^{\circ} \mathrm{C}$

Design V2: $90 \times 35 \times 58 \mathrm{~mm}$, mounting height 55 mm
app. 65 g
on 35 mm DIN-rail or with screws M4.
IP $30 /$ IP 20

Watchdog Time-Relay Type WD100V

Technical Data

Rated supply voltageUs
Contact elements
Contact type
Measuring input clock

Pulse lenth
Input Reset
Rated ambient temp. range
Dimensions h x w x d
Weight
Attachment
Protection housing / terminals
Example for application: Release motor

The software of the mmonitored control (PLC, IPC) makes a clock signal at the output Q5 (DC24V, transistor). The relay of the WD100V picks up only when the input recognizes a clock signal. The time between two slopes has to be shorter than the time set at the WD100V (time xscale). When the clock is missing completely or at a missing slope, the output relay of the WD100V opens contacts 11-14 and the motor is switched off respectively switching on is inhibited. When the square signals recovers and the reset-input is closed or supply-voltage is swit-
emergency-stop circuit of the machine.
Application:
Monitoring of controls/IPC in packing machines.
Monitoring of application software
Order-number
Z224317

ched on, the relay picks up again (not earlier than 500 ms after switching off).

AC/DC 24-240 V, 0/50/60 Hz, <2W, < 3 VA DC 20,4-297 V, AC $20-264 \mathrm{~V}$
1 change-over contact (co)
Type 2 see "General technical Informations"
app. DC 24 V square wave ($\mathrm{LOW} \leq 4 \mathrm{~V}, \mathrm{HIGH} \geq 12 \mathrm{~V}$) Relay picked up when square wave voltage is fed Relay is released 1-1000 ms after last slope 0,5 ... 1000 ms
Button for Reset $/$ bridge $=$ autoreset
$-32^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}$
Design V2: $90 \times 35 \times 58[m m]$
approx. 100 g
on 35 mm DIN-rail or with screws M4.
IP 30/ IP 20

Measuring Transducers

Overview 166
for Temperature 168
Pt 100, Thermocouples
Type TMU300, TMU100V, TMU104V
Type TR210, Limit-Relay at the same time
with galvanic isolation 174
Type MU1000K
for Current / Voltage (Isolating amplifier) 175with galvanic isolationType MU1000K, MU1001K, MU100U
for AC/DC Current/Voltage 178with galvanic isolationType MU2000K
for Potentiometers / Resistance 179
Type MU100W
Limit-Relay for analog signals 180
Type STW1000V2
Measuring-Point Change-over-Switches 181
Type MUM

Measuring Transducers

General
Measuring transducers supply a linear output signal which is proportional to the measured value. ZIEHL delivers measuringtransducers for input signals $D C$ voltage and AC/DC current, Pt100, Pt1000, KTY83/84, thermocouples and resistance (potentiometer). Output signals are: DC 0/4-20 mA, 0-10 V or frequencies. Frequency signals can be easily evaluated by digital
inputs of PLC's.
Various measuring- and switching-devices are also available with analog output. Thus also measuringtransducers for AC voltage, frequency and speed are available.
To display the measured values digital panelmeters type MINIPAN are recommended.
For the evaluation of limits we recommend our limitrelays STW1000V2 and TR210.
In combination with our measuring point change-over switch MUM8 and MUM16 up to 16 signals can be connected to one input (i.e. display or PLC).

Measuring Transducers for Temperature

Type	Input	Output	Potential separation	Housing- Design		
TMU300	$3 \times$ Pt100	$4-20 \mathrm{~mA}$	no	420		Transducer for motor-protection
:---						
LR210						

More devices with integrated measuring transducer (see according product-grcup in catalog):

TR122DA	Pt100 $2-/ 3-$-wire	$0 / 4-20 \mathrm{~mA}$	no	S12

Measuring Transducers for Thermocouples

Type	Input	Output	Potential- separation	Housing- Design	Remarks
TR210	B, E, J, K, L, N,	$0 / 4-20 \mathrm{~mA}$	no	V4	Digital display, programmable, R, S, T
		$0-10 \mathrm{~V}$			or 2 Sensors, difference, 2 alarms/relays

More devices with integrated measuring transducer (see according product-group in catalog):

| MINIPAN 352P, | B, E, J, K, L, N, | $4-20 \mathrm{~mA}$ | yes | 350 |
| :--- | :--- | :--- | :--- | :--- | | potential free output 4-20 mA, |
| :--- |
| 352V and SE352 | R, S, T \quad Loop-supplied,

Measuring-Transducers for AC Current (see Electronic Current-Transformers)

Type	Input	Output	Potential- separation	Housing- Design	Remarks
STWA1FH	AC 0-20 A	$0,5-20 \mathrm{~Hz}$	yes	H	Electronic current-transmitter, Transistor-output
STWA1AH	AC 0-15 A	$0-20 \mathrm{~mA}$	yes	H	Electronic current-transmitter, No suply required
STWA2AH	AC 0-20/100 A	$4-20 \mathrm{~mA}$	yes	H	Electronic current-transmitter, Loop-powered $4-20 \mathrm{~mA}$

More devices with integrated measuring transducer (see according product-group in catalog):

| MINIPAN 352P |
| :--- | :--- | :--- | :--- | :--- | :--- |
| MINIPAN 352V | | AC/DC current |
| :--- |
| and voltage |$\quad 4-20 \mathrm{~mA} \quad$ yes $\quad 350 \quad$| Passiv analog output mit |
| :--- |
| Loop-powered |

Measuring-Transducers for DC current/voltage

Type	Input	Output	Potentialseparation	HousingDesign	Remarks
MU1000K	DC 0/4-20 mA und $0-10 \mathrm{~V}$	$\begin{aligned} & 0 / 4-20 \mathrm{~mA} \\ & 0-10 \mathrm{~V} \end{aligned}$	yes	K	Universal-supply-voltage all inputs and outputs in one device
MU1001K	$\begin{aligned} & \text { DC } 0 / 4 \ldots 20 \mathrm{~mA} \\ & \text { DC } 0 \ldots . .300 \mathrm{mV} \\ & \text { DC } 0 \ldots 300 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0 / 4-20 \mathrm{~mA} \\ & 0-10 \mathrm{~V} \end{aligned}$	yes	K	Universal-supply-voltage all inputs and outputs in one device Scaleable inputs
MU100U	DC 0/4-20 mA	0/4-20 mA und $0-10 \mathrm{~V}$	$\begin{aligned} & \text { yes } \\ & 0-10 \mathrm{~V} \end{aligned}$	K	Universal-supply-voltage all inputs and outputs in one device
TR210	$\begin{aligned} & \text { DC 0/4-20 mA } \\ & 0-10 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0 / 4-20 \mathrm{~mA} \\ & 0-10 \mathrm{~V} \end{aligned}$	no	V4	Digital display, programmable, 1 or 2 Sensors, difference, 2 alarms/relays

Measuring Transducers for Potentiometers

Type	Input	Output	Potential- separation	Housing- Design	Remarks
MU100W	Potentiometer $0-500 \Omega / 10 \mathrm{k} \Omega$	$0 / 4-20 \mathrm{~mA}$ and $0-10 \mathrm{~V}$	no	V 2	For remote potentiometers

More devices with integrated measuring transducer (see according product-group in catalog):
TR122DA $0-850 \Omega \quad 0 / 4-20 \mathrm{~mA}$ no \quad S12 $\quad 2$ alarms/relays

Measuring Transducers for Speed/Frequency

FRMU1000	AC-voltage $10-500 \mathrm{~Hz}$	$0 / 4-20 \mathrm{~mA}$ $0-10 \mathrm{~V}$	yes	V4	Measuring voltage $80-440 \mathrm{~V}$
FRMU1000	$5-99999 \mathrm{IMP} / \mathrm{min}$	$0 / 4-20 \mathrm{~mA}$ $0-10 \mathrm{~V}$	yes	V4	Input for proximity-sensor 2- or 3-wire, PNP oder NPN

Measuring Transducer for Motor Protection
 TMU300 for 3 x Pt100

Art.-no: T236076

Transducers for motor protection TMU300 are transducers for 1-3 sensors Pt100 (RTD).
Anew, current-saving measuringsystem makes it possible to evaluate 3 sensors with a transducer that is supplied by a loop 4-20 mA.

Application:

Recording of temperatures ate.g. motors, generators, transformers or compressors and forward them to relais or controls for evaluation.
In difference to PTC with sensors Pt100 a adjustable switching temperature can be realized. The temperature protection can be adapted to the requirements at any time.
Optimal operation and longer life by intelligent management possible. E.g. no start at high motor temperatures.
The cast-resign sealed electronics can be used at temperatures up to $85^{\circ} \mathrm{C}$ and thus be placed near the sensors, e.g. in the terminal box of a motor. This reduces influence of EMC and line resistance. The signal 4-20 mA can be transmitted over long distances

Input
Output
Current output
Voltage loop
Error
Temperature coefficient
Reference conditions adm. operating temperature

Dimensions (W x H x D)
Attachment
Protection housing / terminals
Weight

This design is protected.
The sensors Pt100 are connected in 2-wire-technique. The output signal is a current $4-20 \mathrm{~mA}$. The value of the output current corresponds with the temperature of the hottest sensor.

Characteristics:

- connection of 1-3 sensors Pt 100 in 2-wire-technique
- measuring range $0 \ldots 200^{\circ} \mathrm{C}$
- automatic selection of warmest sensor
- $\mathrm{I}<3,5 \mathrm{~mA}$ at short circuit in any sensor
- I > 25 mA at interruption in any sensor
- analog output 4-20 mA
- rated ambient temperature up to $85^{\circ} \mathrm{C}$
- no supply voltage required (supplied by 4-20 mAloop)
- with sealed-in electronics

1 - $3 \times$ Pt 100 DIN 43 760/IEC 751 without compensation of line resistance

DC $4 \ldots 20 \mathrm{~mA}$
DC 12... 32 V
class 2,5
$0,025 \% /{ }^{\circ} \mathrm{K}$
IEC $770, \mathrm{Tu}=23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$, Us $=\mathrm{DC} 24 \mathrm{~V} \pm 1 \mathrm{~V}$
$-20 . . .+85^{\circ} \mathrm{C}$
TMU300
Design 420 with terminals
$60 \times 55 \times 32 \mathrm{~mm}$
Screw mounting $2 \times \mathrm{M} 4$
IP 40 / IP 20
approx. 70 g

Limit Value Switch Type TR210

for 2 Temperature-Sensors or 0/4-20 mA, 0-10 V, 2 Limits, Analog-output

TR210

Function

The limit value switch TR210 monitors up to 2 measuring inputs for Pt100 (RTD), Pt1000, thermocouples, or standard-signals 0/4-20 mA, 0-10 V.
The signals are monitored for up to 4 limits. The value of one or of both inputs can be read out at an analog output.

- Measuring and monitoring range $-170 \ldots+1820^{\circ} \mathrm{C}$
- resolution $0,1^{\circ} \mathrm{C}$ (to $999.9^{\circ} \mathrm{C}$)
- Analog output (scaleable) for 1 input, min./max. of 2 inputs or difference of 2 sensors (no isolation between inputs and output)
- 2 relay outputs
- Shifting of day/night (selectable with contact at terminals Y1/Y2)
- Universal power supply AC/ DC 24-240 V
- Easy setting with 3 buttons and preset programs
- Storing of min- and maxvalues of inputs
- Code-lock against manipulation of settings
- Terminals pluggable

2 Measuring-Inputs:

- Resistance-sensors Pt 100 (RTD), Pt 1000, KTY 83/84 in 2- or 3-wire-connection
- Thermocouples types B, E, J, K, L, N, R, S or T
- different sensors at both inputs possible
- Standard-signals 0/4-20 mA, 0-10 V (scaleable)

Displays:

- 4-digit for measuring value 2 LEDs for state of relays 3 LEDs sensor/difference 2 LEDs day/night

Application:

The TR210 is very versatile and can thus be used in many applications. Nevertheless multiple preset programs allow an easy setting.
It can be used as a limit switch or as a controller for 2 limits (with day/night shift up to 4 limits).
As a measuring transducer it can convert signals from the temperature-sensors to standard-signals or change the scaling of standard-signals. The user can also select, if minimum or maximum of 2 signals or the difference of 2 signals is connected to the analog output.
For more applications see basic programs.

Switching-Functions:

- 2 relays (co-contacts)
- 2-4 limits
- Warmest/coldest sensor switches relay
- Programmable for every relay:
- hysteresis (+ or - = MIN- or MAX-function) -199.9...999.9 s
- autoreset or electronic reclosing lock
- elay-time for switching and switching back 0... 9999 s
- operating- or closed current-mode
- cyclic check of function
- Monitoring of difference in temperature
- Preset basic programs

Order-number: T224071

Basic Programs

Technical Data
Rated supply voltageUs
2 Measuring inputs

Measuring-time
Analog output

Relay output

Test conditions
Rated ambient temperature range
Dimensions h x w x d
Protection housing / terminals
Weight
Attachment

Program 6:
1 Standard-Signal 0/4-20 mA or 0-10 V, 2 Limits
Display can be scaled, e.g. measuring input 4-20 mA = display $0 . . .1200 \mathrm{I} / \mathrm{h}$.
Application: Monitoring of signals from a measuring transducer for 2 limits, e.g. over- or under- exceeding of limits with pre-alarm and alarm or monitoring of a signalrange ($\mathrm{min} / \mathrm{max}$) and/or as measuring-transducer. In combination with any measuring-transducers, signals like pressure, volume-flow, pH -value, ... can be monitored.

Program 7:

2 Standard-Signals 0/4-20 mA or 0-10 V,

1 Limit each

Display can be scaled, e.g. measuring input 4-20 mA = display 0... $1200 \mathrm{I} / \mathrm{h}$.
Application: Monitoring of signals from 2 measuring transducers, each for 1 limit, e.g. over- or under- exceeding of a limit as double electronic controller.

Program 8:

2 Standard-Signals $0 / 4-20 \mathrm{~mA}$ or $0-10 \mathrm{~V}$ for monitoring of differences of signals
Application: Regulation or monitoring of the difference of 2 analog signals for 2 limits, e.g. levels of liquids.

Program 9:
2 Temperature-Sensors, 2 shared Limits
Application: Coldest (MIN) or warmest (MAX) sensor switches relay. Monitoring of 2 bearings for pre-alarm and alarm.

Application as Measuring-Transducer:
At programs with 1 measuring-input the output can be scaled for this input, e.g. $0 . . .200 .0=4-20 \mathrm{~mA}$.
At programs with 2 measuring-inputs the output can be scaled for 1 input or min- or max- value of both inputs.
At programs for measuring of differences output can be scaled for 1 signal or for the difference input 2 minus input or for min- or max- value of both inputs.
Thus the TR 210 can be used as limit value switch and/ ormeasuring-transducersimultaneously. The measured values ca be forwarded to e.g. a remote display or a superior control.

AC/DC 24-240V, <3W, <5VA (AC 20-264 V, DC 20,4-297 V) Pt 100, Pt 1000 according to EN 60751 Thermocouples types B, E, J, K, L, N, R, S, according to EN 60 584, DIN 43710 0/4-20 mA (22 2), 0-10 V ($13 \mathrm{k} \Omega$)
$<2,5$ s to 5 s, depending on speed of change of signal 0/4-20 mA, max. $500 \Omega .0-10 \mathrm{~V}$, max. 10 mA (without isolation to inputs)
type 3, see "general technical informations"
2×1 co- (change-over) contact
see "general technical informations"
$-20 \ldots+60^{\circ} \mathrm{C}$
design V4: $90 \times 70 \times 58$ [mm], mounting height 55 mm
IP 30 / IP 20 (terminals pluggable)
app. 200 g
on 35 mm DIN-rail or with screws M 4

Measuring-Transducer for Temperature TMU100V for Pt 100 (RTD)

Model TMU100 Pt100 measuring transducers are suitable for measuring temperatures with sensors Pt100 (RTD).
Zero and FullScale can be freely set within the whole range-199... $+850^{\circ} \mathrm{C}$. To do this only resistors with the according value or a Pt 100 -decade is connected. The adjustment is done by pressing a button.

The built-in universal powersupply $A C / D C$ 24-240 V allows the connection to all common supply-voltages.
The Pt100- sensor can be connected in 2- or 3-wire connection. The output delivers $0 / 4 \ldots 20 \mathrm{~mA}$ and $0 \ldots 10 \mathrm{~V}$ simultaneously.

- Pt100-input 2- or 3-wire automatic compensation of
- line up to 500Ω total resiistance (sensor + line) Detection of sensor-break
- Easy adjustment of Zero and FullScale by pressing a button
- Wide measuring-range $-200 \ldots+850^{\circ} \mathrm{C}$

Technical Data
Rated supply volatge Us
Adm. tolerance DC
Adm. tolerance AC
Measuring input
Temperature-range
Resolution
Tolerance
Temperature factor
Analog output
Error
Test conditons
Rated impulse withstand
voltage
Contamination level
Rated insulation voltage
Rated ambient temp. range
Dimensions (h x w x d)
Weight
Attachment
Protection housing / terminals

- Analog output 0 ... $20 \mathrm{~mA} / 4$... 20 mA
- Analog output 0 ... 10 V
- LEDs for display of operative state
- Universal supply AC/DC $24-240 \mathrm{~V}$
- Housing for DIN-rail or wall-mount, 35 mm wide, mounting height 55 mm

Order-number
T236090

AC/DC 24 V ... $240 \mathrm{~V}, 0 / 50 / 60 \mathrm{~Hz},<3 \mathrm{~W},<5 \mathrm{VA}$
DC 20... 297 V
AC $19 . . .264 \mathrm{~V}$
Pt 100 EN 60751, 2-/3--wire, $\leq 0,8 \mathrm{~mA}$
$-200 \ldots+850^{\circ} \mathrm{C}$
0,1 K
$\pm 0,5 \%$ of measured value $\pm 0,5 \mathrm{~K}$
<0,03 \%/K
DC $0 . . .10 \mathrm{~V}$, min. $1 \mathrm{k} \Omega$
DC 0/4... 20 mA , max. 500Ω
$<0,3 \%$ of FullScale
EN 61010
4000 V

2
250 V
$-20 \ldots+60^{\circ} \mathrm{C}$
design V2: $90 \times 35 \times 58 \mathrm{~mm}$, mounting height 55 mm app. 130 g
on 35 mm DIN-rail EN 60715 or with screws M4 IP 20 / IP 30

Measuring Point Multiplicator TMU104V
 1 Input for Temperature Sensors, 4 Outputs Pt100 (RTD)

TMU104V

Block diagram

Simulator für Pt 100:

Controlled via interface RS 485 (protocol Modbus RTU) the TMU1004V can simulate up to 4 sensors Pt 100 (RTD). This allows the application in equipment, that makes automatic tests and calibrations at devices and installations with several inputs Pt 100.

Order-number: T236061

Technical Data

Sensor input 1T/2T/3T

Sensor output OUT1...OUT4

Sensor output OUT1...OUT4		Pt100 according to EN60751
	Reaction time	< 10 ms
	Current range	$200 \mu \mathrm{~A}$.. 5 mA
	Type of connection	2-, 3-, 4-wire
	Tolerance	$\pm 0,2 \%$ of simulated value
Test conditions		EN 61010-1
	Rated impulse voltage	4000 V
	Overvoltage category	III
	Contamination level	2
	Rated insulation voltage	Ui 300 V
	ON period	100\%
	Insulation / Test voltage	Us - OUT1...4, Input, RS 485: DC 3820 V OUT1... 4 -Input, RS 485: DC 1000 V
		OUT1 - OUT2 - OUT3 - OUT4: DC 1000 V
	no insulation	Input - RS 485
	EMC-Tests	EN 61326-1
	Rated ambient temperature range	$-20 . . .65{ }^{\circ} \mathrm{C}$
Housing	Dimensions ($\mathrm{w} \times \mathrm{h} \times \mathrm{d}$)	Design V6, $105 \times 90 \times 58 \mathrm{~mm}$
	Torque	0,5 Nm (3,6 lb.in)
	Protection Housing/Terminals	IP30/IP20
	Installation	Snap mount on rail 35 mm or screws M4
	Weight	app. 200 g

Temperature factor	$\pm 0,01 \% / \mathrm{K}$
Measuring error of sensor line	$+0,25 \mu \mathrm{~V} / \Omega$
Reference junction	$\pm 5^{\circ} \mathrm{C}$
Measuring time	$\leq 440 \mathrm{~ms}$

Reaction time
Current range Tolerance
no insulation
EMC-Tests

Dimensions ($\mathrm{w} \times \mathrm{h} \times \mathrm{d}$)

Installation
Weight

Tolerance		$\pm 0,2 \%$ of measured value $\pm 0,5 \mathrm{~K}(\mathrm{KTY} \pm 5 \mathrm{~K})$	
Sensor curren		$\leq 0,6 \mathrm{~mA}$	
Temperature fa	actor <0,0	$<0,04^{\circ} \mathrm{C} / \mathrm{K}$	
Measuring tim	2-wire/3-wire ≤ 33	$\leq 330 \mathrm{~ms} / \leq 440 \mathrm{~ms}$	
Thermocouples according to EN 60584, DIN 43710:			
Type	Measuring range [${ }^{\circ} \mathrm{C}$] from	to	Tolerance [${ }^{\circ} \mathrm{C}$]
B	0	1820	$T>300 \pm 2$
E	-270	1000	± 1
J	-210	1200	± 1
K	-200	1372	± 2
L	-200	900	± 1
N	-270	1300	± 2
R	-50	1770	± 2
S	-50	1770	± 2
T	-270	400	± 1

Thermocouples according to EN 60584, DIN 43710:

AC/ DC $24 \mathrm{~V}-240 \mathrm{~V}<2,5 \mathrm{~V}$
DC 20,4-297 V, AC $20-264 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$

Pt100 (RTD), Pt1000 nach EN 60751:

	Measuring range $\left[{ }^{\circ} \mathrm{C}\right]$ to		Short Circuit $[\Omega]$	Break $[\Omega]$	Resistance of sensor Sensor
frome[line					

Universal-Measuring-Transducer MU1000K Temperature Pt 100 (RTD), DC Current and Voltage, Isolating Amplifier

Technical Data

Universal-measuring-transducers MU1000K can measure signals Pt100 (RTD) and DC current (0/4-20 mA) and voltage (DC 0/210 V). Several measuring-ranges are pre-programmed. More can be easily scaled. Temperatures at sensors Pt 100 can be evaluated from $-200^{\circ} \mathrm{C}$ to $+800^{\circ}$.
The output-signals $0 / 2-10 \mathrm{~V}$ and $0 / 4-20 \mathrm{~mA}$ are potentially separated from inputs and supplyvoltage.
With its universal power-supply AC/DC 24-240 V the measuringtransducer can be connected to all common supply-voltages.

Inputs:

- Input DC 0/2-10 V
- Input DC 0/4-20 mA
- Supply-voltage for external measuring transducer DC 18V/25 mA
- Input Pt 100, 3-wire, -200 ... $+800^{\circ} \mathrm{C}$
- automatic compensation of line-resistance
- pre-programmed zeros and spans
- individually programmable zeros and spans

Rated Supply Voltage Us
Input DC-Voltage Accuracy
Input DC-Current Accuracy
Input Pt 100
Temperature-range
Line-resistance
Accuracy Sensor-current

Output voltage Accuracy
Output current Accuracy Error load

Galvanic insulation
Response-time T09 Pt100 Voltage-/Current input

Test conditions
rated ambient temperature-range
Housing dimensions ($\mathrm{h} \times \mathrm{w} \times \mathrm{d}$)
Protection housing/terminals
Attachment
Weight

Outputs:

- DC 0/4-20 mA
- DC 0/2-10 V
- Insulation between inputs, outputs and supplyvoltage

Displays and control elements:

- 2 buttons for scaling
- 4 LEDs for display of state and scaling
- Universal supply-voltage AC/DC $24-240 \mathrm{~V}$
- Housing type K, 22,5 mm wide

Order-number: T236002

AC/DC $24 \mathrm{~V}-240 \mathrm{~V}, 0 / 50 / 60 \mathrm{~Hz}<3 \mathrm{~W}<5 \mathrm{VA}$
DC: 20,4-297 V, AC: 20-264 V
DC 0/2-10 V, max. $27 \mathrm{~V}, 12 \mathrm{k} \Omega$
$\leq 0,1 \%$ from fullscale
0/4-20 mA, max. $100 \mathrm{~mA}, 18 \Omega$
$\leq 0,5 \%$ from fullscale
Pt 100 acc. to EN 60751 / IEC 60 751, 3-wire
$-200^{\circ} \ldots+800^{\circ} \mathrm{C}$
max. 500Ω (sensor + line)
$\pm 0,5 \%$ from value $\pm 0,5 \mathrm{~K}$, drift: $\leq 0,04{ }^{\circ} \mathrm{C} / \mathrm{K}$
$\leq 0,6 \mathrm{~mA}$
DC 0/2-10 V, load min. $1 \mathrm{k} \Omega$
0,3 \% from fullscale, drift <0,01 \%/K
DC 0/4-20 mA, load max. 500Ω
0,3 \% from fullscale, drift <0,015 \%/K
$0,3 \%$ of current $x(250 \Omega-$ load $) / 250 \Omega$
supply-voltage - input - output
$<350 \mathrm{~ms}$
$<20 \mathrm{~ms}$
see "general technical information"
$-20^{\circ} \mathrm{C} . . .+65{ }^{\circ} \mathrm{C}$, EN 60068-2-5 dry heat
type K, $75 \times 22,5 \times 115 \mathrm{~mm}$
IP 40 / IP 20
35 mm standard-rail or screws M4 (option)
app. 100 g

Universal-Measuring-Transducer MU1001K DC Voltage, Isolating Amplifier

MU1001K

Universal Measuring-Transducers MU1001K can measure DC-signals up to 300 V . Inputs 60/150/300 mV are measuring DC current.
Pre-set measuring-ranges can be selected by the user. More measuring-ranges (zero and full scale) can be easily scaled.
The output-signals DC 0/2-10 V and $0 / 4-20 \mathrm{~mA}$ are insulated from measuring-input and supplyvoltage.
With its universal power-supply AC/DC 24-240 V the measuringtransducer can be connected to all common supply-voltages.

Inputs:

- \pm DC $0-300 \mathrm{mV}$ (pre-set: 60/150/300 mV, $\pm 60 / 150 / 300 \mathrm{mV}$)
- DC 0-10V, $\pm 10 \mathrm{~V}$
- DC 0-300 V (pre-set: 20/50/100/200/300 V)

Zeros and Full Scales for more measuring-ranges can be freely selected by the user.

Outputs:

- DC 0/4-20 mA
- DC 0/2-10 V
- Insulation between inputs, outputs and supplyvoltage

Displays and control elements:

- 2 buttons for scaling
- 4 LEDs for display of state and scaling
- Universal supply-voltage AC/DC $24-240 \mathrm{~V}$
- Housing type K, 22,5 mm wide

Order-number: T236006

AC/DC $24 \mathrm{~V}-240 \mathrm{~V}, 0 / 50 / 60 \mathrm{~Hz}<3 \mathrm{~W}<5 \mathrm{VA}$ DC: 20,4-297 V, AC: 20-264 V
\pm DC $10 \mathrm{~V} / \mathrm{DC} 300 \mathrm{~V}$, max. $300 \mathrm{~V}, 500 \mathrm{k} \Omega$
\pm DC 300 mV , max. $2 \mathrm{~V}, 10 \mathrm{M} \Omega$
$\leq 0,1 \%$ from full scale
14 Bit
DC 0/2-10 V, load min. $1 \mathrm{k} \Omega$
0,3 \% from Fullscale, Drift <0,01 \%/K
11.6 Bit, $<3,1 \mathrm{mV}$

DC 0/4-20 mA, load max. 500Ω
0,3 \% from Fullscale, Drift <0,015 \%/K
11,6 Bit, <6,1 $\mu \mathrm{A}$
$0,3 \%$ of current x (250 - load) / 250Ω
Supply voltage - Input - Output
$<20 \mathrm{~ms}$
$<40 \mathrm{~ms}$
see "general technical information" $-20^{\circ} \mathrm{C} \ldots+65^{\circ} \mathrm{C}$, EN 60068-2-2 dry heat
type K, $75 \times 22,5 \times 115 \mathrm{~mm}$
IP 40 / IP 20
35 mm standard-rail or screws M4
app. 100 g

Universal-Measuring Transducer/ Isolating Amplifier

MU100U

The universal measuring transducer MU100U can be connected to any supply voltage AC or DC between 24 and 240 V .
Input signals and output signals are electrically isolated from each other.
Signals DC 0/4-20 mA or 0-10 V can be connected to the inputs. The input signals are transduced to standard-signal 0-10 V, 0/4-20 mA at the outputs.

It is often necessary to separate the potentials ofsignals by means of isolation amplifiers as otherwise this would lead to adulteration of measuring values because of compensating currents.
Furthermore, the low-voltage side is effectively protected against damage caused by malfunctions at the primary side.
Because of the variety of the current standard signals $(0-20 \mathrm{~mA}$, $4-20 \mathrm{~mA}, 0-10 \mathrm{~V}$), it often happens that the output of a measuring transducer is not compatible with the input of the evaluation unit. MU 100 U eliminates these problems. Stockkeeping is largely facilitated by the universal supply voltage and different input and output signals in one device. These measuring transducers almost always fit.

The measuring signal applied to one of the inputs is converted into a normalized voltage signal and changed into a frequency. The frequency signal is transferred by means of an optocoupler for electrical isolation. It is then converted again into a voltage and amplified. Signals $0 / 4-20 \mathrm{~mA}$ and $0-10 \mathrm{~V}$ are now available at the outputs. The electronics before and after the optocoupler are supplied from the power supply unit with potential separated voltages each.

- Input signals DC 0-20 mA, 0-10 V
- Output signals DC 0-20 mA, 0-10 V
- Offset with signals 4-20 mA can be compensated by the user
- Universal supply voltage AC/DC 24-240 V
- electrical isolation between inputs and outputs
- supply voltage for external measuring transducers $-5 /+18 \mathrm{~V} / \mathrm{max} .30 \mathrm{~mA}$
- Isolation voltage 2.5 kV

Technical Data

Power Supply
Inputs
Voltage supply for ext

Measuring Transducer

Outputs

Test Conditions

Rated supply voltage Us adm. tolerance DCV adm. tolerance ACV Power consumption recommended fuse

Input voltage
Nominal input resistance Input current max. current Nominal input resistance
voltage
current

Output voltage
max. no load voltage
max. current
Output current
max. short-circuit current max. load
Accuracy
Temperature effect
Nominal rise time $\mathrm{T}_{0,9}$
rated ambient temperature range
ambient storage temperature
Isolation
EMV
Operating time

Dimensions H x B x T
Line connection one-wire fine-wire with multicore cable ends
Fitting position
Fastening
Protection housing / terminals
Burning behaviou
Stripping length
Connection torque of screw Weight

Order-numbers

AC/ DC $24 \mathrm{~V}-240 \mathrm{~V}$
DC 20-297 V
AC 19-264 V, Frequency $20-120 \mathrm{~Hz}$
< 3 W
2 A slow (gL)
DC 0-10 V
$>500 \mathrm{k} \Omega$
DC 0/4-20 mA
DC 50 mA
50Ω
DC -5 V/ ground GND1
-16-20 V
max. 30 mA
2 outputs with common ground
DC 0-10 V
DC 12 V
DC 20 mA
DC 0/4-20 mA
DC 30 mA (short-circuit-proof)
500Ω
class 0,2 at $\mathrm{Tu}=23^{\circ} \mathrm{C}$
$0,025 \%{ }^{*} K^{-1}$
50 ms
$0 . .50^{\circ} \mathrm{C}$
$-20 . . .+70^{\circ} \mathrm{C}$
Input/Output/Supply voltage 2500 VAC
EN 61000-6-4 / EN 61000-6-2
100\%

Design K: $75 \times 22,5 \times 110[\mathrm{~mm}]$
$1 \times 0,5-2,5 \mathrm{~mm}^{2}$
$1 \times 0,14-1,5 \mathrm{~mm}^{2}$
any
Snap mounting on 35 mm standard rail conforms to DIN EN 60715 or M4 screws
IP 40 / IP 20
UL 94 V-2
8 mm
max. $0,5 \mathrm{Nm}$
approx. 200 g
T236010

Universal-Measuring-Transducer MU2000K
 AC and DC, Voltage and Current

MU2000K

Art.-no: T236053

Measuring transducers MU200K can measure DC- and AC- voltages up to 600 V and AC - and DC- currents $0-1 / 5 \mathrm{~A}$.

Preset measuring ranges can be selected. More measuring ranges (zero and full scale) can be easily scaled.
The output signals DC 0/2-10 V and $0 / 4-20 \mathrm{~mA}$ are insulated from measuring input and supply voltage.
With its universal supply voltage AC/DC 24-240 V the measuring transducer can be connected to all common supply voltages.
The MU2000K e.g. is suitable for measuring DC voltages and charging currents at batteries or for measuring AC voltages and currents in plants for own generation of energy.

Inputs:

- Voltage AC/DC 600 V (preset 0-30/150/300/600V, 80-120V)
- Current AC/DC 5 A (preset 1/5 A)
- AC and DC measuring without switching over

Rated supply voltage Us

Input voltage
Accuracy
Input current
Accuracy

Measuring method/ Resolution
Output voltage
Accuracy
Resolution
Output current
Accuracy
Resolution
Error load
Galvanic insulation
Measuring time/ Averaging

Test conditons
Rated ambient temperature range
Housing dimensions ($\mathrm{H} \times \mathrm{W} \times \mathrm{D}$)
Protection housing/terminals
Attachment
Weight

Zero and full scale for other ranges can be scaled by the user.
Outputs:

- DC 0/4-20 mA
- DC 0/2-10 V
- Insulation between input, output and supply voltage

Displays and control elements:

- 2 buttons for scaling
- 4 LEDs for display of state and scaling
- Universal supply-voltage AC/DC 24-240 V
- Housing type K, 22,5 mm wide

AC/DC $24 \mathrm{~V}-240 \mathrm{~V}, 0 / 50 / 60 \mathrm{~Hz}<3 \mathrm{~W}<8 \mathrm{VA}$ DC 20,4-297V, AC $20-264 \mathrm{~V}$

AC/DC 0-30/150/300/600 V, $80-120 \mathrm{~V}, \mathrm{Ri}=500 \mathrm{k} \Omega$, max. 600 V , max. 300 V to GND
DC $\leq 0,2 \%$ AC $\leq 0,5 \%(50 / 60 \mathrm{~Hz}$) from full scale, drift < 0,02 \%K
AC/DC 1A, 5A, max. 7,5 A/4s, 25A/1s, $30 \mathrm{~m} \Omega$
$D C \leq 0,2 \%, A C \leq 0,5 \%(50 / 60 \mathrm{~Hz})$ from full scale, drift < 0,02 \%K

RMS (AC), Averaging (DC)/ 14 Bit
DC 0/2-10 V, load min. $1 \mathrm{k} \Omega$
$\leq 0,3 \%$ from full scale, drift <0,01 \%/K 11.6 Bit, $<3,1 \mathrm{mV}$

DC 0/4-20 mA, load max. 500Ω
$\leq 0,3 \%$ from full scale, drift <0,015 \%/K
$11,6 \mathrm{Bit},<6,1 \mu \mathrm{~A}$
$0,3 \%$ of current x (250Ω - load / 250Ω
Supply voltage - input - output
$45 \mathrm{~ms}+20 \mathrm{~ms}$ x number of averages (1/2/8/16/32 values)
see "general technical information"
$-20^{\circ} \mathrm{C} \ldots+50^{\circ} \mathrm{C}$
Design K, $75 \times 22,5 \times 115 \mathrm{~mm}$
IP 40 / IP 20
35 mm standard rail or screws M4
app. 100 g

Measuring-Transducer for Potentiometers
 MU100W for 0-500 Ω... 0-10 k Ω

The MU100W measuring transducer converts the position of a potentiometer into a linear signal 0/4-20 mA respectively $0-10 \mathrm{~V}$. Zero can be easily scaled $0 . . .40$ $\%$, FullScale $60 \ldots 100 \%$ of the range of thepotentiometers by pressing a button.

The built-in universal powersupply AC/DC 24-240 V allows the connection to all common supply-voltages.
The output delivers $0 / 4 \ldots 20 \mathrm{~mA}$ and $0 \ldots 10 \mathrm{~V}$ simultaneously.

Applications are the creation of adjusting commands or the detection of mechanical elements, e.g. flaps.

- Connection of a potentiometer $0 . . .500 \Omega$ to $0 . . .10 \mathrm{k} \Omega$
- Zero adjustable 0 ... 40 \% of Scale
- FullScale adjustable 60 ... 100 \% of Scale
- Easy adjusting of zero and FullScale by pressing a button
- Analog output 0 ... 20 mA / 4 ... 20 mA
- Analog output 0 ... 10 V
- LEDs for display of operative state

Rated supply volatge Us
Tolerance DC
Tolerance AC
Measuring input
Measuring current/ -voltage
Analog output
Error
Temperature factor
Test conditons
Rated impulse withstand
voltage
Contamination level
Rated insulation voltage
Rated ambient temp. range
Dimensions (h x w x d)
Weight
Attachment
Protection housing / terminals

- Universal supply AC/DC $24-240 \mathrm{~V}$
- Housing for DIN-rail or wall-mount, 70 mm wide,
- mounting height 55 mm

Order-number
T236041

AC/DC 24V... $240 \mathrm{~V}, 0 / 50 / 60 \mathrm{~Hz},<3 \mathrm{~W},<5 \mathrm{VA}$
DC 20... 297 V
AC 19... 264 V
Resistance-potentiometer $0 . . .500 \Omega$ to $0 \ldots 10 \mathrm{k} \Omega$ 6,6 mA ... $330 \mu / 3,3$ VA

DC $0 . . .10 \mathrm{~V}$, min. $1 \mathrm{k} \Omega$
DC 0/4... 20 mA , max. 500Ω
< $\pm 1 \%$
$0-10 \mathrm{~V}:<0,01 \% / \mathrm{K}, 0 / 4-20 \mathrm{~mA}:<0,015 \% / \mathrm{K}$
EN 61010
4000 V
2
250 V
$-20 \ldots+60^{\circ} \mathrm{C}$
design V2: 90x35x58 mm, mounting height 55 mm app. 130 g
on DIN-rail 35 mm or with screws M4
IP 20 / IP 30

Accessories for Measuring Transducers:
Limit Value Switch for standard signals, DC 0/4-20 mA, 0/2-10 V

STW1000V2

ZIEHL current-relays STW1000V2 monitor standardsignals from measuring transducers if a limit is exceeded. For monitoring of more than 1 signal, multiple relays can be connected in series (current) or in parallel (voltage).
Measuring inputs for 0/4-20 mA and $0-10 \mathrm{~V}$, adjustable hysteresis and switching delay and the choice between operating- and closed-current mode of the relay make it a very universal limit switch.

- Measuring inputs 0-20 mA / 0-10 V, switchable to 4-20 mA / 2-10 V
- Limit adjustable 0-100 \%
- Hysteresis adjustable 5-30 \%
- Start-up delay adjustable 0,1 ... 10 s
- Switching delay adjustable 0,1 ... 10 s
- Output-relay 1 changeovercontact (co)
- Operating- or closed-circuitmode for relay selectable with bridge
- LEDs for display state of operation
- Universal supply-voltage AC/ DC 24-240 V
- Housing for mounting in switchgear cabinets or fuseboxes, 35 mm wide

Technical Data
Supply voltageUs

Relay output
Type of contact
Test conditions
Function
Measuring signals

Switching point
Hysteresis
Error of setting
Repeat error
Temperature-dependence
Start-up-delay dEnable
Switching delay dAL
Rated ambient temperature range
Dimensions ($\mathrm{H} \times \mathrm{W} \times \mathrm{D}$)
Attachment

Measuring Point Change-over Switch

 \section*{for 8 or 16 Measuring points}

 \section*{for 8 or 16 Measuring points}}

Allgemeines

MUM8

Measuring point change-over switches allow the connection of up to 16 measuring points to 1 measuring device, e.g. an analog input of a PLC.
The inputs can be selected with a BCD-Code.
Manual selection can be made with a code-switch.

With the MUM8, alternatively 8 measuring points with common ground or 4 measuring points with separated ground can be switched.

- PLC-compatibel. Channelselection over 3 bit parallel (24 V), e.g. PLC or by a code switch
- Optional switching + or -
- 8 channels ($0 / 4$... $20 \mathrm{~mA}, 0$... 10V, Pt 100) with common ground
- 4 double-channels (=Pt 100/3wire and thermocouples)
- Supply-voltage AC 230 V or DC 24 V
- LED-display for selected channel
- Clock time in automatic mode adjustable 0,5 ... 10 s
- plug-in terminals

With the MUM16, alternatively 16 measuring points with common ground or 8 measuring points with separated ground can be switched.

- PLC-compatibel. Channelselection over 4 bit parallel (24 V), e.g. PLC or by a code-switch
- Optional switching + or -
- Enable-inputforusing multiple MUM in parallel
- Monitoring of up to 16 signals for one limit with only 1 limit switch
- 16 channels ($0 / 4 \ldots 20 \mathrm{~mA}, 0$... 10V, Pt 100) with common ground
- 8 double-channels (= Pt 100/ 3-wire and thermocouples)
- Simple configuration with 3 DIP-switches

In automatic mode, the inputs are polled (tact-time adjustabe) and thus be displayed in succession.
When using a measuring point change-over switch, only 1 measuring input is needed to collect multiple values. Especially with slowly changing signals like temperatures, measuring every other second is enough.
Expensive inputs for Pt 100 or $0-10 \mathrm{~V} / 0-20 \mathrm{~mA}$ at PLCs can be saved.

- Supply AC/DC $24-240 \mathrm{~V}$
- LED-display for selected channel
- Tact-time in automatic mode adjustable $0,5 \ldots 10 \mathrm{~s} 5$
- plug-in terminals
- Housing for mounting in switchgear cabinets or fuse boxes, 140 mm wide, mounting height 55 mm

Technical Data
MUM8
MUM16

Supply voltage	Rated supply-Voltage Us	AC 220-240 V/ DC 24 V	AC/DC 24-240 V
	Frequency Power consumption Admissible tolerance	$\begin{aligned} & 50 / 60 \mathrm{~Hz} \\ & <2 \mathrm{VA} \\ & \text { AC }-10 \ldots+10 \% \end{aligned}$	$\begin{aligned} & 0 / 50 / 60 \mathrm{~Hz} \\ & <6,5 \mathrm{VA}, 4 \mathrm{~W} \\ & -10 \ldots+10 \% \end{aligned}$
Inputs	Number of input channels	8 channels with common ground or 4×2 channels potentially separated	16 channels with common ground or 8×2 channels potentially separated
	display	1 LED / channel	
	switching voltage	max. AC/ DC 24 V	
	switching current	max. 100 mA	
	switching capacity	max. 2,4 W or 2,4 VA (ohmic Load)	
	expected contact life mech. expected contact life elec.	8×1 co approx. 10^{8} operations	$16 \times 1 \mathrm{co}$
		5×10^{7} operations at $12 \mathrm{~V} / 10 \mathrm{~mA}$	
		3×10^{6} operations at $24 \mathrm{~V} / 0,1 \mathrm{~A}$	
	control inputs	manual / automatic enable channel select 3 bit BCD channel select 4 bit BCD potentially separated from analog part	
	control signal	for all control inputs 0/24 V (PLC-compatible)	
	clock-time	adjustable (potentiometer) $0,5 \ldots 10 \mathrm{~s}$	
	switching time	break between 2 channels app. 1-2 ms	
Outputs	outputs at single channel: at double channel:	max. 2	
		In 0-7 to Out $1+$ Out 2 In $0-3$ to Out 1	In 0-15 to Out 1 In 0-7 to Out 1
		In 4-7 to Out 2	In 8-15 to Out 2
Test Conditions	rated insulation voltage U_{i} insulation	EN 50178	
		AC $250 \mathrm{~V} / \mathrm{DC} 300 \mathrm{~V}$	
		EN 60664	
	pollution grade	4 kV	
	EMC		
	transformer	EN 61 000-6-2, EN 61 000-6-3 EN 61558	
Normal conditions of use	rated ambient temperature storage temperature environmental conditions on-period	$\begin{array}{ll} 0 \ldots+50^{\circ} \mathrm{C} & -20 \ldots+55^{\circ} \mathrm{C} \\ -40^{\circ} \ldots+75^{\circ} \mathrm{C} & \\ \text { EN } 60068-1 & \\ 100 \% & \end{array}$	
Housing	Dimensions (h x w x d) mm Protection housing Protection terminals Fitting position Weight	Design K: $75 \times 22,5 \times 118$ V8: $90 \times 140 \times 58$	
		IP 20, EN 60529	
		IP 20, EN 60529	
		any	
		app. 150 g	app. 350 g
	Attachment	on 35 mm DIN-rail according to EN 60715 option: screw-mount M 4 with additional bar (not included)	
	Order-numbers:	T236030	T236035

Dimension Illustrations

Housings for Switchgear-Cabinet Mount 184
Design C
Design K
Design S12
Design S24
Design V2, 4, 6, 8
Splash-Proof Housing 187
Design 194
Panel-Mount Housing 188
Design 300
Design 350 / 352
Design SE
Design SE2
Electronic Current-Transformers/ Current-Sensor 190
Design H
Design S1
Temperature-Sensors 191

Housing
Design C

Material:
Polyamid PA66

Housing

Material:

Design

Housing
Design S12

Material:
Polyamid PA 6

Housing
Design V

Switchboard mount
V2, V4, V6, V8:
Mounting height 55 mm

Material:
Polyamid PA 66
Front plate Polycarbonat

Panel mount V2, V4, V6, V8:

$\mathbf{m m}$	\mathbf{a}	\mathbf{b}	\mathbf{c}
V2	35	50	65
V4	70	85	100
V6	105,5	120	135
V8	140,5	155	170
Tol.	$+0,3$	$\pm 0,3$	± 2

Housing
Design 194

Material:
Polystyrol = Standard
Polycarbonat = Option

Housing Design 300 MINIPAN 300

Material:
Housing: Polyamid PA 6
Front plate: Polycarbonat

Housing Design 350 MINIPAN 352P

Material:
Housing: Ultramid U-B3WG5 Front plate: Polycarbonat

Housing Design SE MINIPAN SE352

Material:
Housing: Noryl GFN2 SE1
Backplane: FR4
Front frame: Noryl GFN2 SE1

Panel cut-out 92×45

Material:
Front frame: Noryl SE1 GFN1
Front plate: Polyesterfolie
Housing: Noryl SE1 GFN1 Backplane: FR4

Housing Design H
for
Current-Transfomers

[^4]Housing Design S1
for Current-Sensor S1

Designs of Temperature-Sensors

Type of Housing

U2

G2
Aluminum
High-grade steel WSt-Nr. 1.4571

Brass

High-grade steel WSt.-Nr. 1.4571

General Technical Informations

Important note: The terms and definitions laid out here do not lay claim to accuracy, completeness or legal validity. These terms and definitions should help the user to understand our catalogue, and provide some useful hints and advice. In case of any doubt, the user should refer to the relevant VDE regulations, IEC publications and DIN standards.
Standards + specifications: The devices described in this catalogue are manufactured taking into account the provisions of EN60664 / VDE0110, EN50178 / VDE0160, EN60947 / VDE0660, EN 61010 /VDE 0411, EN60255 / VDE0435 and a number of other relevant standards and regulations.
Quality assurance: Our quality management system according DIN EN ISO 9001 is evaluated regularly by an independent body. In addition we have a quality assurance system for the production in accordance with Directive 2014/34/EU (ATEX) and parts of the production are monitored by UL.

AC/DC 24 V: Such a device can be operated from either an AC or DC 24 V supply voltage. It is not equipped with a mains transformer (the supply voltage input goes directly to the rectifier) and there is no insulation between supply voltage and electronic parts.
AC voltage, AC current: technically AC voltage has a sinusoidal form. Preferred frequencies are 50 and 60 Hz . AC voltages and $A C$ currents are measured as $R M S$ value. The peak value is $\sqrt{ } 2$ times the RMS value.
Altitude: The device is designed for use at a height of up to 2000 m above sea level (MSL).
Ambient temperature, permissible: typically $-20^{\circ} \mathrm{C}$ to +55 ${ }^{\circ} \mathrm{C}$ measured in a distance of 10 mm to the bottom surface of the housing. Depending on self-heating and the material used also other values can be realized. With some devices the specified accuracy applies only within a narrow temperature range.
ATEX approval: -> Explosion protection
Motor protection devices with ATEX approval protect non-explosion-protected motors and explosion-protected motors with ignition rating according EN 60079 in normal operation an in case of failure.
Accident prevention regulation DGUV Vorschrift 3: All devices featured in the catalogue comply with the accident prevention regulations issued by the Professional Association for precision mechanics and electrical engineering (BG ETEM). This provision clarifies that for "Occasional managing" components such as pushbuttons, tilting levers or knobs,a protection against direct contact has to be made.All dangerous voltage parts are "finger-proof" run and may therefore be not touchable with the test finger acc. EN 60529. The standard equipment of our house meet these conditions, unless the customer has removed no parts.
Climatic conditions, humidity, condensation: Electrical equipment must be suitable for the application. The ambient
conditions of the electronic device determine the protection afforded against the environmental influences (e.g. cooling, water splash, oil saturated air) or the equipment has its own protection system (protection provided by enclosures, e.g. IP 65). Ziehl devices are for installation complying with EN50178/VDE 0160. All devices are usually suitable for environmental class 3 K 3 .
CE mark: We declare as manufacturer, that our products comply with the requirements of the appropriate directives. These products carry the CE mark.
Closed current principle: The relay is energized in the OK state (when the actual value is within the permissible range) and releases with the alarm signal. Disadvantage: malfunction may produce a switching signal, e.g. in case of voltage breakdown in the supply voltage. Advantage: A monitoring breakdown will normally be recognized. \rightarrow Open circuit current.

Current output: Measuring transducers have current outputs with DC 0-20 mA or 4-20 mA. The loading capacity of current outputs is limited. The permissible maximum load (burden) is determined by the maximum voltage in the device, e.g. 500Ω at 20 mA and 10 V . Current inputs of multiple devices may be connected to a current output up to the maximum permissible load. \rightarrow Input resistance.
Creepage destance: shortest distance along the surface of an insulation material between two conducting parts.
DC voltage: A DC voltage is indicated as an average value. Accumulators supply a smooth DC voltage. RMS value and average value are taken to be equal. Rectifiers supply a pulsating DC voltage. If nothing else is stated, a sufficiently smooth DC voltage is expected, produced with the help of capacitors, when using devices with DC supply voltage; the upper and lower peak values of the DC voltage should not exceed the permissible tolerance of the supply voltage.
Duty cycle: ZIEHL devices are usually designed for a 100\% duty cycle.
Declaration of Conformity: The devices comply with the regulations and directives 2014/35/EU (electrical equipement designed for use within certain voltage limits) and 2014/30/ EU (electromagnetic compatibility - EMC)

1. EN 50178: Electronic equipment for use in power installations
2. EN 61000-6-4: Electromagnetic compatibility (EMC)-Part 6-4: Generic standards - Emission standard for industrial environments
3. EN 61000-6-2:

Electromagnetic compatibility (EMC) - Part 6-2: Generic standards - Immunity for industrial environments
4. EN 61010-1: Safety requirements for electrical equipment for measurement, control and laboratory use - Part 1: General requirements
5. EN 60255-27: Measuring relays and protectionequipment

- Part 27: Product safety requirements

6. EN 60947-8: Low-voltage switchgear and controlgear-Part

Climatic Conditions (normal conditions, minimum ambient conditions)

Typical places

weather-protected places, e.g. not air-conditioned control rooms and operating areas
during storage
during transport

Temperature
$+5^{\circ} \mathrm{C} . .+40^{\circ} \mathrm{C}$ outside of cabinet $-20^{\circ} \mathrm{C} . . .+70^{\circ} \mathrm{C}$ $-20^{\circ} \mathrm{C} . .+70^{\circ} \mathrm{C}$

Relative Humidity
5\%...85\% no condensation
5\%...95\%
5\%...95\%

Barometric Pressure
$760 \mathrm{hPa} . .1060 \mathrm{hPa}$
$760 \mathrm{hPa} . . .1060 \mathrm{hPa}$
$700 \mathrm{hPa} . . .1060 \mathrm{hPa}$

5-8: Control circuit devices and switching elements - Threeposition enabling switches.
Emitted interference: If not otherwise specified devices with AC supply voltage (built-in transformer) meet the requirements of the EN 61000-6-3: Emission for residential, commercial and light-industrial environments. If not otherwise specified devices with DC control voltage or AC/DC 24-240 V-all voltage power supplies meet the requirements of EN 61000-6-4: Emission standard for industrial environments.
EN 61558/ VDE 0551: Specification of the technical construction of a transformer with safe separation between mains and electrical low voltage. Performed absolutely short-circuit proof or conditional short-circuit proof with integrated \rightarrow Fuse.
Explosion proof: Devices carry an explicit warning with regard to applications in potentially explosive atmospheres. They are not equipped with intrinsically safe terminals. Connection to sensors in potentially explosive atmospheres must be effected via suitable zener-barriers (exception MS(R)220Vi). In doing so, it must be observed that line resistance should not be adversely affected. Devices with ATEX approval are to be installed outside potentially explosive atmospheres.
Galvanic isolation (of mains): In many applications a galvanic separation is necessary between the voltage supply and the electronics, and thus e.g. measuring input/sensor. The separation is achieved typically by transformer or DC/DC converters \rightarrow proof voltage.
Galvanic isolation (between input and output): \rightarrow Measuring transducer with galvanic isolation
Hysteresis: Hysteresis is the difference between two switching points. For example, the hysteresis is $-5^{\circ} \mathrm{C}$ if a temperature monitor relay switches off at $80^{\circ} \mathrm{C}$ as the temperature rises and switches back again at $75^{\circ} \mathrm{C}$ as the temperature falls. A certain minimum hysteresis is necessary to avoid any "flutter effect" in the relay when switching.
Important Notes! Read carefully! Faultless and reliable functioning of devices requires appropriate transport and storage, expert installation and setup, as well as operation in accordance with the regulations. These devices may be operated only by persons who are well acquainted with their installation, setup and operation and who are qualified in accordance with their occupation. They should strictly observe all operating instructions, the directions fixed to the device and the relevant safety regulations for installation and operation of electronic plant. These devices are constructed and tested to DIN VDE specifications, and leave our factory in perfect condition and conforming with safety regulations. To maintain this condition, the safety regulations which are explicitly highlighted under the headline "Attention" in the operating instructions must be strictly observed. Death, bodily harm, or damage to the device itself and to other devices or installations may result from nonobservance of the safety regulations. Should the information in the operating instructions be in any way inadequate, please do not hesitate to contact us directly or one of our agents or representatives. Relevant regulations in the user's country must be observed with regard to the application area of the device, over and above the valid industry standards and regulations mentioned in these operating instructions which are valid in Europ
Input impedance: A current input has usually a low input impedance. Especially for the upstream transducer it is important that inputs DC 0/4-20 mA cause loads as little as possible. And high current inputs to keep low power loss on the shunt. Vice versa, a voltage output requires a high load resistance so as to reduce the power losses. \rightarrow current output \rightarrow voltage output
Installation hints: All devices are to be installed by appropriately
trained skilled labour taking into account all the relevant regulations.
Insulation: In order to protect against dangerous body currents (electric shock), protective arrangements must be taken conforming with EN 61140. Shock-proof protection \rightarrow Protection system. A frequently used protection measure consists of insulation. \rightarrow Insulation coordination \rightarrow creepage distances.
Insulation coordination: due to the application expectable impulse and over-voltages during lifecycle (e.g. lightning strike), subsequent contamination and the insulation features of the materials are used as a basis for the definition of minimum values $\mathrm{fo} \rightarrow$ creepage distances. The same applies for the \rightarrow Proof voltage, which is used for testing the insulation features of the products.
Insulation voltage: The rated insulation voltage Ui is specified according EN60664. It provides information of the maximum voltages that can be connected to the equipment.
Insulation voltage, temperature sensor: In the case of temperature sensors a higher insulation voltage will usually lead to a higher heat transmission resistance of the sensor and thus to a higher response time.
Maintenance: Usually not necessary for our devices. Depending upon the application, though, we recommend periodical inspection, especially where otherwise a breakdown would not be noticed.
MAX-contact: The switching condition for a relay will be achieved at signal increase on the set switching point. Switchback after signal falls below particular setting: \rightarrow Hysteresis. Hysteresis is negativ.
MIN-contact: The switching condition for a relay will be achieved at signal drop on the set switching point. Switchback after signal exceeds a particular point: \rightarrow Hysteresis. Hysteresis is positive.
MINIKA ${ }^{\circledR}$: ZIEHL registered trade name.
MINIPAN ${ }^{\circledR}$: ZIEHL registered trade name.
Modifications: We reserve the right to make technical modifications within the scope of further development of our products.
Pollution degree: according to EN 60664-1 the levels of pollution are defined as follows:
Pollution degree 1: no pollution or only dry, non-conductive pollution occurs, which has no influence
Pollution degree 2: only non-conductive pollution occurs except that occasionally a temporary conductivity caused by condensation is expected
Pollution degree 3: conductive pollution occurs, or dry, nonconductive pollution occurs which becomes conductive due to condensation which is expected
Pollution degree 4: continuous conductivity occurs due to conductive dust, rain or other wet conditions.
Ambient temperature, permissible: usually -20 or 0 up to $55^{\circ} \mathrm{C}$ measured at 10 mm distance from the middle of the upper housing surface. Different values may be appropriate, dependent on self-heating and the material used. For some devices the stated accuracy is valid only within a reduced temperature range.
Power consumption: Indicated in VA (AC) or W (DC). We are constantly trying to minimize the capacity consumption in our devices by the application of current-saving components.
Power supply: If the voltage range is specified for the supply voltage, e.g. AC $220-240 \mathrm{~V}+10 /-15 \%$, the operating range will be from AC 187 V up to AC 264 V . In case of DC supply only smoothed voltages with an upper ripple of max. 5% are admissible.

Proof voltage: voltage for testing the \rightarrow Insulation of an equipment. The insulation strenght between supply voltage, output contacts, housing and the electrical low voltage circuits (ELV) is tested. As a rule of thumb: withstand voltage $=2 \times$ rated insulation voltage +1000 V. \rightarrow Protection provided by enclosure, \rightarrow Safe separation.

Protection system: ZIEHL devices comply with DGUV part 3 (formerly BGV A3). They are equipped with protection against indirect contact (finger guard, protection againstelectric shock).
Protection proviced by enclosure (IP-Code): Defined according to EN60529. The first figure thereof states the protection against contact and the penetration of foreign bodies, the second one represents water-proofing, as follows:

1st figure:

0: no protection
1: Protection against large foreign bodies $\varnothing 50 \mathrm{~mm}$
2: Protection against medium-sized foreign bodies $\varnothing 12 \mathrm{~mm}$
3: Protection against small foreign bodies $\varnothing 2.5 \mathrm{~mm}$
4: Protection against granular-structured bodies $\varnothing 1 \mathrm{~mm}$
5: Protection against dust deposit. Complete protection against contact of voltage-carrying parts
6: protection against dust penetration

2nd figure:

0 : No protection
1: Protection against vertically falling dripping water
2: Protection against angular ($\leq 15^{\circ}$) falling dripping water
3: Protection against spray water ($<60^{\circ}$ to vertical)
4: Protection against splash water from all directions
5: Protection against jet water
6: Protection against water penetration while dipping under fixed conditions
7: Protection against water penetration while dipping under fixed conditions
8: Protection against submersion
To achieve the type of required protection in the relevant application, the devices must be installed into housings or cabinets if necessary. In places with expected radiated EMI, the installation should be appropriately shielded.
Rated frequency: ZIEHL devices with AC voltage supply usually operate with 50 and 60 Hz . Deviations are indicated explicitly.
Rated voltage: The component or device is designed for this voltage and the operating and performance features refer to it. \rightarrow Us, rated operating voltage
Relay, connection designation according to EN 60947-1: Change-over = 11 (15), normally closed contact = 12 (16), normally opened contact $=14$ (18) (figures in brackets for time-delayed contacts). NO: 13/14 (17/18), NC: 11/12 (15/16). The first number is the number of the relay, e.g. $32=$ normally closed contact of relay K3.
Relay, contact material: The material used for the relay contacts is crucial for the switching capacity. No contact material is optimally suited for all applications. Thus contact materials which are suitable for switching higher voltages and currents will show poor features with regard to the transmission of low signals. ZIEHL devices usually use relays with silver-nickel alloy (AgNi).

Silver-nickel alloy AgNi10

Advantage: high resistance to arc-erosion, low welding tendency, especially suitable for inductive loads, 6-400 V and 10 mA up to 100 A . Disadvantage: higher contact resistance than other Ag contacts.

Silver nickel alloy $\mathrm{AgNi} 0,15$ (fine grain silver)

Advantages: relatively small contact resistance, low welding tendency, suitable for the switching of medium and high loads.

Relay, contact life cycle: This will be determined by the number of switches under load. Modern relays have mechanical life cycle of more than 1 million switching operations. The electrical life cycle will be determined by the switching capacity of the contacts. See also contact material.

Relay, contact protection: Switching inductive loads it is advised to connect the load with a protection element to eliminate errors. For alternating current with a RC-element or a VDR (voltage-depending resistance) at DC with a RC-element or a free-wheeling diode. The switch-off time then must be observed. Generally the interference effect will be significantly reduced and the life-time of the contacts improved.
Relay contacts: see Table next page
Relay, fuse protection of contacts: In order to avoid welding of the relay contacts, we generally recommend the use of a fuse. For typical application with relays type 2 and makecontact(NO) we recommend a fuse slow-blow 4Aor miniatur circuit breaker 4 A (MCB) characteristic B..
Relay, rated operating current le: This is the current which can reliably be switched by the relay contact at an indicated rated operating voltage -> Switching capacity.

Relay, switching capacity according to EN 60 947-5-1: to AC 15 / DC 13, auxiliary current circuits, electromagnetic load
Relay, switching capacity is the load (ohmic), which can switched by a relay contact. Maximum specified values, therefore, shouldn't be exceeded. In case of AC current loads the maximum switching capacity must be reduced because of the phase displacement between current and voltage ($\cos \varphi=0.7$).
Service life: is mainly limited by the relay (number of operations, contact load) and electrolytic capacitors (which may dry out within a certain period in the case of high ambient temperature). We generally equip our devices with relays and capacitors with a high life expectancy.
Shock resistance: Specifies the acceptable mechanical shock (in a multiple of the acceleration due to gravity " g " with half sine wave form and 11 ms duration) where no malfunctions occur. All instruments featured in the catalogue are resilient with 5 g
Storage temperature, permissible: usually -20 up to $+70^{\circ} \mathrm{C}$.
Switch-on behaviour: When applying the supply voltage it takes some time until all outputs and displays change into the steady state. Output relay with \rightarrow closed current principle are designed to signal an error message during this switch-on period.
Test conditions: These are the test conditions of our devices, as far as not mentioned otherwise in the data sheet Rated insulation voltage Ui acc. EN 60664-1:
AC 250 V pollution degree 3
AC 415 V pollution degree 2
Overvoltage category III
Rated impulse withstand voltage 4000 V
Proof voltage between control supply voltage Us, sensor circuits and relay outputs AC 2500 V
Proof voltage open contact (normal open, no) AC 1000 V Emitted interference/immunity for industrial environments: EN 61000-6-4; EN 61000-6-2
Vibration resistance: $\pm 0,075 \mathrm{~mm} 10 \ldots . .57 \mathrm{~Hz} ; 1 \mathrm{~g} 57 \ldots 150 \mathrm{~Hz}$ Shock resistance: 5g 11 ms

Climatic conditions 3K3 acc. EN 60721-3

Us, Control voltage, rated operating voltage: is the rated value of the voltage to be connected for operating the device. Voltage variations are allowed within the stated tolerances

Vibration resistance: Specifies at which amplitude and acceleration in a defined frequency range no malfunctions or damages occur. All our devices featured in the catalog are
sufficient resilient and comply with EN 60068-2-6 for device, where no increased demands appear due to their installation location. Vibration Test Fc with $10-57 \mathrm{~Hz} \pm 0.075 \mathrm{~mm}$ and $57-150 \mathrm{~Hz} 1 \mathrm{~g}$
Voltage output: Measuring transducer are available with voltage outputs with DC 0-10 V. Other values are available upon request. The Loading capacity of voltage outputs is limited.

Terms of Payment and Delivery

1) General

All business is transacted according to German law. Orders are only binding after written confirmation. Events such as acts of God or nature, strikes, shut-outs, material shortage, accidents, transport, manufacture or firm disruptions, regardless of whether in own firm or that of a supplier as well as circumstances for which we are not responsible, give us the right to withdraw from the order or to delay its completion. Damage claims of any kind in such a case are out of the question. Times and terms of delivery being made are not binding. Differing sales conditions for individual customers are only valid with our express confirmation. Acceptance of our confirmation of order is taken to mean that the order is valid according to our terms of delivery.

Goods from orders which have been properly filled and delivered cannot be taken back, due to quality reasons. With an order on call, the customer undertakes that he will buy the complete order quantity within 12 months from the date of ordering. The respective minimum order quantity is $1 / 10$ of the complete order. If after 12 months the goods have not yet all been called, this point in time is considered to be the binding delivery date for the remaining goods.
We reserve the right to make technical changes to equipment even in the case of a serial delivery, if this serves further development. Deliveries to commercial customers only.

2) Prices

Our prices are industrial net prices, are in EURO and are subject to Value Added Tax as required by law. Prices billed are our prices valid on the day of delivery. Minimum order value is EUR 100.00, beneath which we must make a low quantity surcharge of EUR 15.00

3) Payment

Invoices are sent as pdf documents by email unless the buyer disagrees explicitly. Invoices must be paid in full, within 10 days from date of invoice without deduction of any kind. If the customer delays payment,
default interest will be charged. Withholding payment or setting off of payment due to any counterclaim is not permissible. Any bank charges incurred by payment from a foreign country are to be paid at source by the customer.

4) Delivery

Delivery is from our factory in Schwäbisch Hall. Delivery is paid by the recipient and at the recipient's own risk. Without instructions to the contrary we dispatch goods by the most cost-effective means. We accept no responsibility for damage in transport unless it is proven that the damage is due to inappropriate packaging on our part. Packing an postage are charged according to expenditure. In the case that after accepting an order from a customer, we become aware of facts which make the customer's ability to pay doubtful, we have the right to change the conditions of payment or refuse delivery.

5) Warranty

Complaints and notice of defects can only be acknowledged within 5 days of delivery. If the complaint is justified, warranty service follows the return of the faulty part(s). Over and above this we will correct possible defects at our discretion up to 2 years after delivery - without consideration of working time of part - by repair or replacement of equipment. This warranty performance includes materials and work time but not transport costs. Further claims including damages claims are not permissible. No responsibility will be accepted for damages resulting from careless treatment. The careful use of our products is the responsibility of the customer. The warranty period for order on call goods also begins with the delivery of the goods but ends at the latest, 3 years after the order is made.

Goods which have been exchanged in the course of repair or which have been modified at the customers wish are warranted by us for 6 months.

6) Retention of title

Good delivered by us remain our property until they have been paid for in full by the customer. The buyer is not entitled to pawn or pledge or use as security, goods which are our property. The buyer is obliged to inform us of the requisition or impounding or any other action by a third party which affects our property.

7) Other arrangements

Oral arrangements or agreements are not legally binding. Buying conditions on the part of the customer which do not conform to these conditions are not binding for us even if they were made a basis for the order and their content was not expressly contested by us.

8) Place of performance

The place of performance of delivery and payment as well as legal domicile for both contract partners is Schwäbisch Hall.

Our Representatives

International

Belgien	Verdoolaege N.V., Noorderlaan 117, 2030 Antwerpen Tel.: +32 3 5411111, Fax: 5410635, e-mail: info@verdoolaege.be, www.verdoolaege.be
China	Guangzhou Zeer Electro-Mechanical Science and Technology Company Ltd. Room B1709, Fuli Yingsheng Tower No. 16, Machang Road, Guangzhou, China P.C: 510623, Tel.: +86 208754 0773, Fax: 8754 4460, Mobile: +86 15915825604 email: liuyunqing@zeer.com.cn, www.zeer.com.cn
Frankreich	Actipass S.A.R.L., Parc Club Orsay Université, 18/20 Rue Jean Rostand, 91400 Orsay Tel.: +33 1 69816110, Fax: 60122016, e-mail: info@actipass.fr
Griechenland und Zypern	ELFA S.A., Alkminis 40,11853 K. Petralona, Athen Tel.: +30 210 3411666, Fax: +30 2103426630 , e-mail: info@elfa.gr, www.elfa.gr
Großbritannien	TVR Instruments Ltd, 143 Butt Road, Colchester, Essex CO3 3DP Tel.: +44 1206 575755, e-mail: sales@tvri.co.uk, www.tvri.co.uk
Italien, nur Provinz Bozen	Eltrotex HandelsgesmbH, Grundauerweg 7, 2500 Baden Tel.: +43 2252 47040-0, Fax: 47040-7, e-mail: office@eltrotex.at, www.eltrotex.at
Niederlande	HPR Techniek B.V., Stolwijkstraat 33, 3079 Rotterdam Tel.: +31 10292 8787, Fax: 292 8765, e-mail: info@hprtechniek.nl, www.hprtechniek.com
Österreich	Eltrotex HandelsgesmbH, Grundauerweg 7, 2500 Baden Tel.: +43 2252 47040-0, Fax: 47040-7, e-mail: office@eltrotex.at, www.eltrotex.at
Polen	Dacpol Co. Ltd., Pulawska 34, 05500 Piaseczno Tel.: +48 22 7035100, Fax: 7035101, e-mail: dacpol@dacpol.com.pl, www.dacpol.com.pl
Portugal	Sisacol Sistems de Automacao e Controle, Lda., Rua das Flores, 16/C Esq., 2855-199 Corrios Tel.: +351 212 549-280, Fax: +351 212 549-288, email: acarlos@sisacol.com, www.sisacol.com
Russland und GUS	NTT-EC Ltd., office 316, Trozhovskaya str. 5, 197342 St. Petersburg Tel.: +7 812 3249973, 3249978, Fax: +7 812 4413229, e-mail: info@ntt-trafo.ru, www.ntt-trafo.ru
Schweiz	Trelco AG, Gewerbestr. 10, 5037 Muhen Tel.: +41 62 7376262, Fax: +41 62 7376270, e-mail: trelco@trelco.ch, www.trelco.ch
Singapur und Malaysia	JCK Controls Pte Ltd, 7030 Ang Mo Kio Avenue 5, \#04-59 Northstar @ AMK, Singapore 569880, Tel.: +656570 9093, Fax: 9091, e-mail: raimond.loo@jck.com.sg
Spanien	Dismai S.L. , Calle Principe de Viana, 4, 48007 Bilbao Tel.: +34 94 4455116, Fax: 4454149, e-mail: dismai@tsai.es, www.dismai.es
Südkorea	Jaewoo Technology Co., Ltd., \#308 Samik Shopping Bldg., 134-20 CheongDam-Dong, GangNam-Gu, Seoul Korea (135-958) Tel.: +82 25152600 (rep.), Fax: 515 3051, cae@jaewoo.com, www.jaewoo.com
Tschechien und Slowakei	ZIEHL-ABEGG s.r.o., Skrobarentská 484/8, 61700 Brno Tschechien Tel.: +420 54542169-0, Fax: +420 54542169-9, email: tomas.riha@ziehl-abegg.cz
Vietnam und Taiwan	siehe JCK Controls Pte Ltd, Singapur

PLZ 0, 99 Ingenieurbüro BIW, Büro Mitte, Döbichauer STraße 5-7, 04435 Schkeuditz Tel.: +49 34204 396008, +49 9133 60444-0, Fax: +49 91336044429 , info@ibbiw.de, www.ibbiw.de

PLZ 17-19, 20-28 Breuell Ingenieurbüro GmbH, Grützmühlenweg 46, 22339 Hamburg Tel.: +49 40 53809210, Fax: 53809285, e-mail: ziehl@breuell.de, www.breuell.de

PLZ 10-16, 29-31, 34, 37-39 Ingenieurbüro Roderich Genth, Pumpstraße 7, 30559 Hannover
Tel.: +495116409122, Fax: 6409124, e-mail: kontakt@genth.de, www.genth.de
PLZ 32-33, 4, 50-53, 57-59 H-I Elektronik Vertrieb GmbH, Düsseldorfer Straße 547, 47055 Duisburg Tel.: +49 203 7614-03, -04, Fax: 764400, e-mail: vertrieb@h-i-elektronik.de, www.h-i-elektronik.de

PLZ 35-36, 54-56, 6 ISF Ing. Büro Supp und Fritz GmbH, Löwenseestr. 20a, 63477 Maintal Tel.: +49 6109 6982922, Fax: +49 6109 6982925, e-mail: info@isfgmbh.de

PLZ 7, 88, 89 ZIEHL industrie-elektronik GmbH + Co KG, Daimlerstr. 13, 74523 Schwäbisch Hall Tel.: +49 791 5040, e-mail: info@ziehl.de

PLZ 80-87 AIV Albiez Industrievertretung GmbH, Pfarrer-Forster-Str. 5, 85452 Moosinning Tel.: +49 8123 92250, Fax: 990105, e-mail: info@aiv-albiez.de, www.aiv-albiez.de

PLZ 90-98 Ingenieurbüro Lutz Beyer, Hauptstraße 33, 91094 Langensendelbach Tel.: +49 9133 60444-0, Fax: 60444-29, e-mail: info@ibbeyer.de, www.ibbeyer.de

Quality MADE IN GERMANY - Certified acc. to DIN ISO 9001

Tel.: +49791504-0
info@ziehl.de, www.ziehl.de

[^0]: Us = Anschlussspannung
 S1 = Aus-Taster
 S2 = Ein-Taster
 S3 = Externer Reset
 H1 = Meldelampe Störung
 F1-F4 = Sicherungen
 K1 = Motorschütz

[^1]: (c) 2016, ZIEHL industrie-elektronik GmbH + Co KG, 74523 Schwäbisch Hall Germany

[^2]: Housing
 Clip for DIN-rail (removeable)
 Terminal (pluggable)
 4 Wall-mounting (M4)

[^3]: Housing
 Clip for DIN-rail (removeable)
 Terminal (pluggable)
 Wall-mounting (M4)

[^4]: 1 Base
 2 Clip for DIN-rail
 3 Terminal (pluggable)
 4 Surface-mount (M4)

