

Zahnradpumpen mit mehreren Volumenströmen Nenndruck 20 MPa · TGL 37 069

Zahnradpumpen mit mehreren Volumenströmen TGL 37 069

Diese Zahnradpumpen mit mehreren Volumenströmen bestehen aus verkettungsfähigen Primär- und Sekundärpumpen mit folgenden entscheidenden Merkmalen.

- Nenndruck 20 MPa
- Maximaldruck 25 MPa
- baugrößenbezogener spezifischer Drehzahlbereich bis max. 3200 min-1
- großes Viskositäts- bzw. Temperaturbereich
 - jeräuschoptimiert durch spezielle Verzahnungstechnik
- servicefreundlich alle Teile austauschbar
- hohe Zuverlässigkeit auch bei hoher Belastung und Schalthäufigkeit durch gestaltoptimierte, hochfeste Gehäuseelemente, Einsatz PTFE-beschichteter Gleitlager, entlastete Lagerbrillen und optimierte Axialspielkompensation.

Technische Daten

Anzahl der Volumenströme

2 Volumenströme

gleicher oder unterschiedlicher Nenngröße bzw. Baugröße möglich, außer Baugröße 4 mit Baugröße 1.

Reihenfolge der Volumenströme

Die Zahnradpumpe mit der größten Nenngröße bzw. bei zwei Zahnradpumpen mit gleicher Nenngröße, bildet diejenige mit dem höchsten Betriebsdruck antriebsseitig die erste Pumpe (Primärpumpe Bauform 3 oder 4).

Die folgende Zahnradpumpe ist in ihrer Nenngröße immer gleich oder kleiner als die vorangegangene Pumpe (Sekundärpumpe Bauform 6).

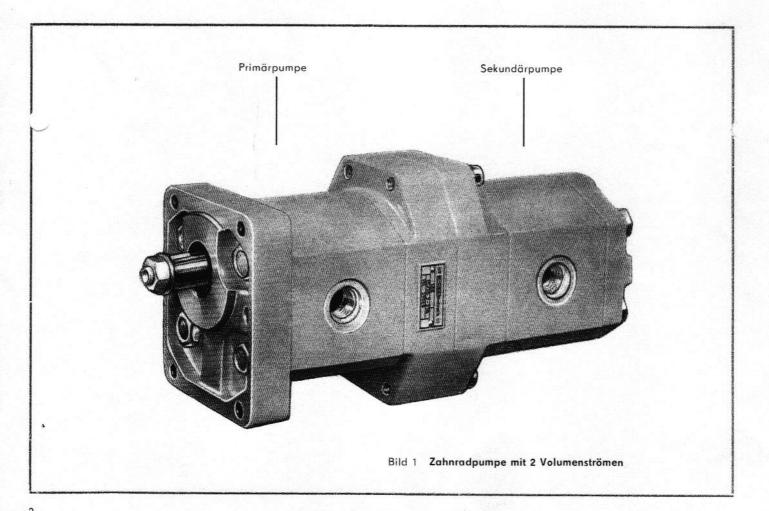
Druckeinsatzbereich

in Abhängigkeit von Drehzahl, Viskosität, Fluidtemperatur, Schalthäufigkeit und Belastungsdauer siehe Diagramme

Bild 27 bis 41

Eingangsdruckbereich

— 0,08 bis 0,5 MPa


Betriebsbereich

— 0,05 bis 0,5 MPa

min. Starteingangsdruck — 0,08 MPa kurzzeitig/ohne Belastung

im Bereich — 0,05 bis — 0,03 MPa Rücksprache mit dem Hersteller

empfohlen

Technische Daten

Typer	nreihe	Nennverdrängungs-	Nenn-	Maximal-	Nenn-	Minimal-	Maximal-	maximales	Nenneingangsdruc	
Baugröße	Nenngröße	volumen cm ³⁻	druck MPa	druck MPa	drehzahl min-1	drehzahl min-1	drehzahl min-1	Drehmoment Nm	MPa	
entenacional garetto encolección a encole	1/20	1	ENG CHICAGO ENGLANDO		1500	960	CONTRACTOR CONTRACTOR	7		
1	1,6/20	1,6	20	25			3200	11	- 0,01±0,01	
	2,5/20	2,5					3200	17 、	- 0,01 <u>-</u> 0,01	
	4/16	4	16	20				22		
	4/20	4						28		
2	6,3/20	6,3	20	25			2000	44		
-	10/20	10					3200	70		
	12/20	12,5		21				70		
	12,5/20	12,5		25	1500	600		88	$-0,01\pm0,01$	
	16/20	16					2400	112		
3	20/20	20	20					140		
	25/20	25				5-0		176		
	32/20	32 /		21				180		
	33/20	32						226		
4	40/20	40	20	25	4500	480	1920	282		
	50/20	50	20		1500	400		352	-0.01 ± 0.01	
	63/20	63		21				356		

Drehmomentbegrenzung

Drehmoment der Antriebswelle darf, unabhängig von der Anzahl der Volumenströme und vom jeweiligen Druckeinsatzbereich, das maximale Drehmoment entsprechend Tabelle nicht überschreiten

Drehzahlbegrenzung

Minimaldrehzahl bei Verkettung unterschiedlicher Baugrößen Minimaldrehzahl der kleinsten Pumpe

Maximaldrehzahl bei Verkettung unterschiedlicher Baugrößen = Maximaldrehzahl der größten Pumpe

Hydraulikflüssigkeit auf Mineralölbasis

vorzugsweise HLP 22, HLP 38 F, HLP 46, HLP 68 TGL 17542 weiterhin sind alle ausländischen Fluids auf Mineralölbasis verwendbar, die für vergleichbare Hydraulikgeräte angeboten und von den Geräteherstellern empfohlen werden.

Gemeinsamer Flüssigkeitsbehälter für alle Volumenströme der verketteten Zahnradpumpen erforderlich (gleiches Fluid für alle ver-

ketteten Zahnradpumpen).

Nennviskosität $35 \pm 5 \, \text{mm}^2/\text{s}$

Viskositätsbereich 8 bis 2000 mm²/s

Betriebsviskosität 8 bis 1000 mm²/s

Parameterzuordnung siehe

Diagramme Bild 32 bis 35

max. Startviskosität 2000 mm²/s

Parameterzuordnung bei Viskosität

> 1000 mm²/s

Betriebsdruck ≤ 1 MPa

Drehzahl ≦ 1500 min-1

Fluidtemperaturbereich 253 bis 353 K (- 20 bis + 80 °C)

Betriebstemperatur 258 bis 353 K (- 15 bis + 80 °C)

Parameterzuordnung siehe Diagramme Bild 36 bis 39

min. Starttemperatur 253 K (- 20 °C)

Parameterzuordnung bei Temperatur > 258 K (— 15 °C) Betriebsdruck siehe

Diagramme Bild 36 bis 39 Drehzahl ≤ 1500 min-l

Umgebungstemperatur-

233 bis 343 K (- 40 bis + 70 °C)

Filteruna Vollstromfilterung im Rücklauf, Nennfilterfeinheit 25 µm

Geräuschverhalten

Gesamtschalleistungspegel (A) für einzelnes Gerät abhängig von der Nenngröße \leq 74 bis \leq 89 dB

Drehrichtung rechts oder links

(auf Antriebswelle gesehen)

Antrieb

Einbaulage beliebig;

Radiale und/oder axiale Belastung der Antriebswelle ist unzulässig, belastbar nur durch Drehmoment

Antriebswelle mit kegligem Wellenende für Antrieb über Ausgleich-

Empfohlen wird:

Elastische Zahnkranzkupplung GWWN 1750 Hersteller VEB Getriebewerk Wernigerode Elastische Bolzenkupplung TGL 38558 Hersteller VEB Zahnradwerk Pritzwalk

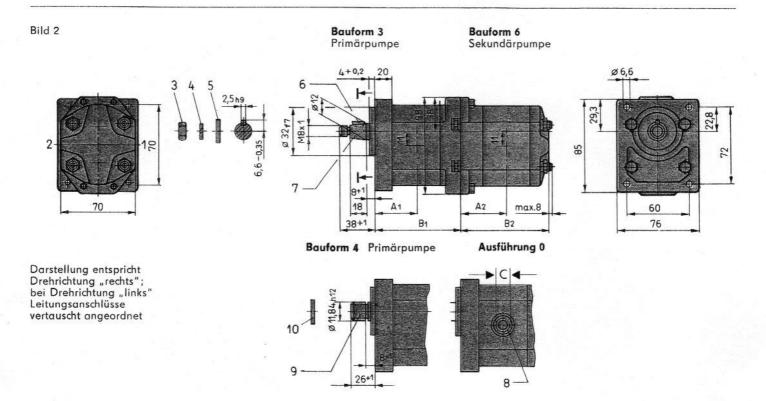
Antriebswelle mit Zahnwellenprofil für Antrieb über Kupplungshülse.

Empfohlen wird:

aufsteckbare, ungelagerte Kupplungshülse mit entsprechendem Zahnnabenprofil, wobei der Antrieb im Olbad oder Olnebel lau-

Leitungsanschlüsse

Gewindeanschlüsse für Rohrverschraubungen mit Rundringabdichtung nach TGL 35001/03 (für Baugrößen 1 bis 3). Flanschanschlüsse für Vierlochflansche analog ISO/DP 6162 E (für


Baugrößen 2 bis 4)

Kennlinien und Diagramme siehe Prospekt "Zahnradpumpen mit einem Volumenstrom" TGL 37069"

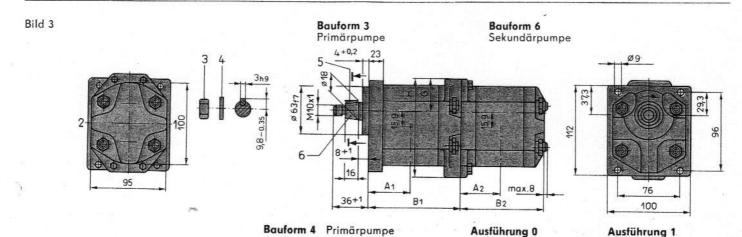
Die in den Tabellen hervorgehobenen Nenngrößen werden als Vorzugsreihe geliefert. Bei Abweichungen von der Vorzugsreihe ist eine Rücksprache mit dem Hersteller erforderlich.

Abmessungen

Zahnradpumpen mit mehreren Volumenströmen · Baugröße 1 · TGL 37 069

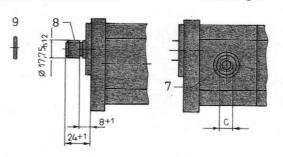
- 1 Saugseite
- 2 Druckseite
- 3 Sechskantmutter PN-75/M-82144 (riangle TGL 0-934-8) Anzugsmoment = 7+5 Nm
- 4 Federring PN-77/M-82008 (△TGL 7403)
- 5 Scheibe PN-78/M-82006 (△ TGL 0-125)
- 6 Scheibenfeder 2,5 x 3,7 PN-73/M-85008 (TGL 9499)
- 7 Kegel 1:10
- 8 Einschraubbohrung nach TGL 35001/03 (für Rundringdichtung)

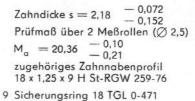
- 9 Zahnwellenprofil 12 x 0,8 x 10 b St-RGW 259-76 Zähnezahl z = 13 Modul m = 0,8 Profilverschiebungsfaktor x = +0,45 Zahndicke s = 1,67 -0,064 -0,135 Prüfmaß über 2 MeBrollen (\oslash 2) $M_a = 14,39$ -0,08 -0,17


zugehöriges Zahnnabenprofil

lenngröße		Länger	maße		Leitungsanschlüsse						
	Α,	В,	A 2	B ₂	Saugs Gewinde	eite 1 eanschluß	Druckseite 2 Gewindeanschluß				
		ACTOR ROBERT WHITE WAS IN			Nennweite	С	Nennweite	C			
1/20	40,1	82,3	44.1	84,3	8	M 14 x 1,5	8	M 14 x 1,5			
1,6/20	41,7	85,4	45,7	87.4		11,5 tief	0	11,5 tief			
2,5/20	44	90,1	48	92,1	12	M 18 x 1,5	12	M 18 x 1,5			
4/16	48	98	52	100	12	14,5 tief	12	14,5 tief			

IRS VA hydraulik


Abmessungen


Zahnradpumpen mit mehreren Volumenströmen · Baugröße 2 · TGL 37 069

Darstellung entspricht Drehrichtung "rechts" bei Drehrichtung "links" Leitungsanschlüsse vertauscht angeordnet

- 1 Saugseite
- 2 Druckseite
- 3 Sechskantmutter TGL 0-934-8 Anzugsmoment = 17 +5 Nm
- 4 Federscheibe TGL 0-137
- 5 Scheibenfeder 3 x 5 TGL 9499
- 6 Kegel 1:10
- 7 Einschraubbohrung nach TGL 35001/03 (für Rundringabdichtung)
- 8 Zahnwellenprofil 18 x 1,25 x 10 b St-RGW 259-76 Zähnezahl z = 13 Modul m = 1,25 Profilverschiebungsfaktor x = +0,15

Nenngröße	Längenmaße											
		- 1			G	,	1	4				
5 001	Α,	B ₁	A ₂	B ₂	Ь	ei Verkettung	mit Baugröß	е				
The control page in Quantum particular to	RESPONSE THE COURSE		ENI OFFICE VALUE		2	1	2	1				
4/20	56	119	69	123				104.9				
6,3/20	57	123	70	127	51.5	20						
10/20	59,3	129,5	72,3	133,5	51,5	39	134					
12/20	61,5	134	74,5	138				11000				

Nenngröße							Leitung	sanschlüsse						
	1.6.		Sauc	gseite	1				Drug	kseite	2			
	Gewinde	anschl.		Flanschanschluß					anschl.	1	Flan	schansch	schluß	
	Nennweite	C	Nennweite	D	E	Q	R	Nennweite	C	Nennweite	D	E	Q	R
4/20	15	15 M 22 x 1.5 15.5 tief	12	13	M8 17 tief	17,5	38,1	O	8 M14x1.5 11.5 tief	12	13	M 8 17 tief	17,5	38,1
6,3/20	15		20	19	M10 18 tief	22,2	47,6	0		12				
10/20	20	20 M27x2	25	0.5	1410.10	0/0	50 /	10	M 18 x 1.5 14.5 tief	20	19	M 10 18 tief	22,2	47,6
12/20		19 tief	25	25	M10 18 tief	26,2	52,4	17		20				

Abmessungen

Zahnradpumpen mit mehreren Volumenströmen · Baugröße 3 · TGL 37069

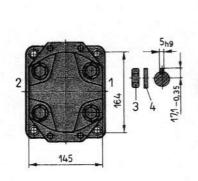
Bild 4 Bauform 3 Bauform 6 Primärpumpe Sekundärpumpe Ø11 156 128 52+1 B1 B₂ 132 Bauform 4 Primärpumpe Ausführung 0 Ausführung 1 Darstellung entspricht Drehrichtung "rechts"; bei Drehrichtung "links" Leitungsanschlüsse vertauscht angeordnet 10+1 1 Saugseite 2 Druckseite 3 Sechskantmutter TGL 0-934-8

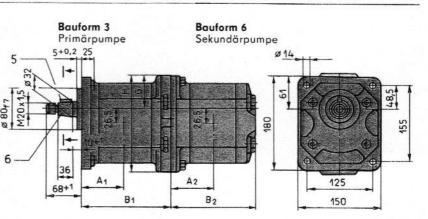
- 4 Federscheibe TGL 0-137 Anzugsmoment = 50 + 10 Nm
- 5 Scheibenfeder 5 x 6,5 TGL 9498
- 6 Kegel 1:10
- 7 Einschraubbohrung nach TGL 35001/03 (für Rundringabdichtung)
- 8 Zahnwellenprofil 25 x 1,25 x 10 b St-RGW 259-76 ähnezahl z = 18
 - odul m = 1,25

Profilverschiebungsfaktor x = +0.45Zahndicke s = 2,61 -0,072 -0,152Prüfmaß über 2 Meßrollen (∅ 2,75) $M_{o} = 28,05 \begin{array}{c} -0,10 \\ -0,21 \end{array}$

zugehöriges Zahnnabenprofil 25 x 1,25 x 9 H St-RGW 259-76

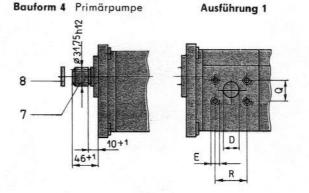
9 Sicherungsring 25 TGL 0-471


Nenngröße					Lċ	ingenmaße					
	A ₁	В,	A ₂	B ₂		G		H ng mit Baugröße			
	Sing Control of the Control				3	2	1	3	2	1	
12,5/20	66,2	146,5	82,2	152,5		to Charles that the State of th	Marine Transcription and Indian	two the transfer of the transf	Section of the section of the	Britania eriscoloristra eriskut petrus.	
16/20	68	150	84	156							
20/20	70	154	86	160	66,8	51,1	45,8	176	140,5	134	
25/20	72,2	158	88,2	164,5		10.5					
32/20	75,7	165	91,7	171,5							


Nenngröße							Leitungs	sanschlüsse																		
			_	seite	1					Drud	seite 2	2														
	Gewinded	ınschluß		Flanschanschluß					anschluß		Flan	schanschl	uВ													
	Nennweite	C	Nennweite	D	E	Q	R	Nennweite	C	Nennweite	D	E	Q	l R												
12,5/20	- 20	M 27 x 2	0.5	05	M 10			PRINTED TO CONTRACT OF CASE	15 M 22 x 1.5	90-00-00-00-00-00-00-00-00-00-00-00-00-0	-	M 10	22,2	47,6												
16/20		19 tief	25	25	18 tief	26,2	52,4	15	15.5 tief	20	19	18 tief														
20/20	32																									-
25/20		M 42 x 2 19.5 tief	32	32	M 12 23.5 tief	30,2	58,7	20	M 27 x 2	25	25	M 10	26,2	52,4												
32/20		13,0 1161			20.0 1101				19 tief	1		18 tief														

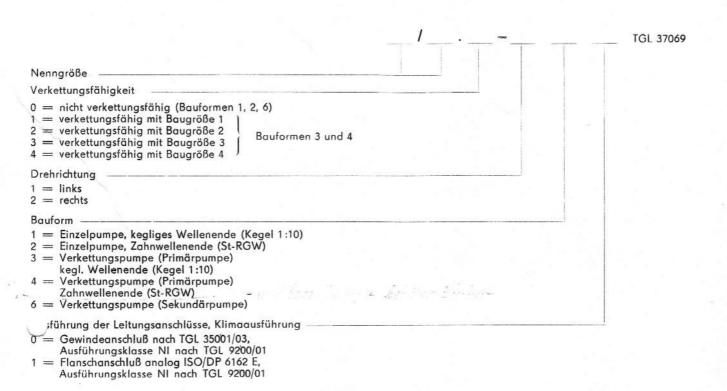
Abmessungen

Zahnradpumpen mit mehreren Volumenströmen · Baugröße 4 · TGL 37 069


Bild 5

Darstellung entspricht Drehrichtung "rechts"; bei Drehrichtung "links" Leitungsanschlüsse vertauscht angeordnet

- 1 Saugseite
- 2 Druckseite
- 3 Sechskantmutter TGL 0-934-10 Anzugsmoment = 95 \pm 15 Nm
- 4 Federscheibe TGL 0-137
- 5 Scheibenfeder 5 x 9 TGL 9499
- 6 Kegel 1:10
- 7 Zahnwellenprofil 32 x 1,25 x 10 b St-RGW 259-76 Zähnezahl z=24 Modul m=1,25 Profilverschiebungsfaktor x=+0,25 Zahndicke s=2,32 $\begin{array}{c} -0,080 \\ -0,170 \end{array}$



Prüfmaß über 2 Meßrollen (\oslash 2,5) $M_a=34,54 \stackrel{-}{-}0,12$ -0,25zugehöriges Zahnnabenprofil $32 \times 1,25 \times 9$ H St-RGW 259-76 8 Sicherungsring 32 TGL 0-471

enngröße						Längenmal	Ве			
	Α,	В,	A ₂	B ₂		G	hei Verkettung	g mit Baugröße	Н	
					4	3	2	4	3	2
33/20	87	189	104	195	78,5	Memorian manufity - Monday Common and Catalo Televide	And Device of the Control of the Control	BILD MANAGEMENT DICK CONTINUES COMME	New or the second second section of the second	164
40/20	89,5	194	106,5	200						
50/20	92,5	200	109,5	206		67,8	55,5	210	178	
63/20	96,5	208	113,5	214						

Venngröße					Leitungs	sanschlüsse					
			Saugseite Flanschanschluß		Druckseite Flanschanschluß						
	Nennweite	D	E	Q	R	Nennweite	D	E	Q	R	
33/20				7			Sufferiolitalisates Company	Commission of the control of the con	Section Court III For Section	- Control Control Control	
40/20	40	38	M 12 23,5 tief	35,7	69,8	25	25	M 10 18 tief	26,2	52,4	
50/20			25,5 Her					To flet			
63/00	50	50	M 12 23,5 tief	42,9	77,8	32	32	M 12 23,5 tief	30,2	58,7	

Bestellbezeichnung

Bestellbeispiel

Benötigt wird:

Zahnradpumpe mit 2 Volumenströmen Nenngröße 32/20; 12/20 (in Verkettungsreihenfolge vom Antrieb aus) Drehrichtung rechts Antrieb mit kegligem Wellenende (Kegel 1:10) Gewindeanschlüsse nach TGL 35001/03, Klimaausführungsklasse NI

Bestellt wird:

7ahnradpumpe 20.2-230x12/20.0-260 TGL 37069

Einsatzgebiete

Fahrzeugbau
Werkzeugmaschinenbau
Landmaschinenbau
Traktorenbau
Transportmaschinenbau
Schiffbau
Bergbaumaschinen
Schienenfahrzeuge
usw.

Maße in mm

Unsere Fachingenieure mit langjährigen Erfahrungen stehen zu Ihrer Beratung gern zur Verfügung.

Änderungen, resultierend aus der laufenden Entwicklung und Standardisierung im Rahmen des RGW, behalten wir uns vor.

Ausgabe 1987 Prospekt-Nr. 2/585/87