Ruggedized version

Application

The KINAX WT 707 (Figs. 1 to 6) converts the angular position of a shaft into a load-independent direct current signal, proportional to the angular position. The unit is contact free. The robust housing has made this unit ideal for machines and ship building.

Features / Benefits

- Measuring input: Angular position

Measured variable	Measuring range limits
Angular position	$0 \ldots 5$ to $0 \ldots 270 \Varangle^{\circ}$

- Measuring output: DC current signal (load-independent, 2-, 3- or 4wire connection)
- Potentiometer for adjusting span / Optimum matching of desired measuring range
- Direction of rotation: output signal increases for clockwise or counterclockwise rotation
- Capacitive scanning system / No wear and low annual maintenance
- Continuous shaft rotation / No damage when overshooting angle measuring range
- Available with type of protection "Intrinsic safety" EEx ia IIC T6 / Can be mounted in hazardous areas (see "Table 4: Data on explosion protection")
- Ancillary unit in ruggedized housing / Vibration and shock-resistant, for applications on large machines and in ship building
- Marine version also available as per Lloyd's Register of Shipping

$\left(\epsilon_{0102}\langle\underline{\varepsilon x} \| 2 G\right.$ (GL)

Fig. 1. KINAX WT 707 with plug-in connector.

Fig. 2. KINAX WT 707 with plug-in connector and foot.

KINAX WT 707- 144D A150

Fig. 3. KINAX WT 707 with screw terminals, cable glands and foot.

Fig. 5. KINAX WT 707 with additional gear, plug-in connector and mounting flange.

Fig. 6. KINAX WT 707 with additional gear, screw terminals, cable glands and foot.

KINAX WT 707

Transmitter for angular position

Technical data

Measuring input Θ

Measured quantity:

Measuring ranges:

Frictional torque:
Sense of rotation:

Measuring output \bigcirc
 Output variable I_{A} :

Zero point correction:
Span adjustment:

Current limitation:
Standard ranges:

Non-standard ranges:

Approx. 25 Ncm
Clockwise or counterclockwise (seen from the shaft side).
The same transmitter can be used for both directions of rotation. A switch has to be changed, however, to reverse the direction on transmitters with ranges 0...> 150 to $0 . . \leq 270 \Varangle^{\circ}$, see "Settings".

See Feature 13 and 14 in "Table 3: Specification and ordering information" for direction of rotation on transmitters with additional gear.

Load-independent DC current, proportional to the input angle

Approx. $\pm 5 \%$
Approx. + $5 /-30 \%$, see "Feature 9"
$I_{\mathrm{A}} \max .40 \mathrm{~mA}$
$0 . .1 \mathrm{~mA}, 3$ - or 4-wire connection $0 . . .5 \mathrm{~mA}, 3$ - or 4-wire connection $0 . . .10 \mathrm{~mA}, 3$ - or 4-wire connection
4... $20 \mathrm{~mA}, 2$-wire connection or
$0 . . .20 \mathrm{~mA}, 3$ - or 4-wire connection adjustable with potentiometer
4... $20 \mathrm{~mA}, 3$ - or 4-wire connection
$0 . . .20 \mathrm{~mA}, 4$-wire connection
$0 . . .>1.00$ to $0 \ldots<20 \mathrm{~mA}$
3 - or 4 -wire connection

External resistance (load): $\quad R_{\text {ext }} \max .[k \Omega]=\frac{12 \mathrm{~V}}{I_{A}[\mathrm{~mA}]}$
(for instruments with DC/AC power supply by AC/DC power pack, with electric isolation)
$R_{\text {ext }} \max .[k \Omega]=\frac{H[V]-12 \mathrm{~V}}{\mathrm{I}_{\mathrm{A}}[\mathrm{mA}]}$
(for instruments with DC power supply, without electric isolation)
$I_{A}=$ Output signal end value
Residual ripple in output current:

Response time:

Accuracy

Reference value:
Basic accuracy:
Basic accuracy:

Reproducibility:

Reference conditions:

Ambient temperature
Power supply
External resistance
Influence effects (maxima): (included in basic error) Linearity error

Dependence on external resistance $\Delta \mathrm{R}_{\text {ext }}$ max.
Power supply influence
$\pm 0.1 \%$
$\pm 0.1 \%$
Additional errors (maxima):
Temperature influence
$\left(-25 \ldots+70^{\circ} \mathrm{C}\right)$
Bearing play influence

Power supply $\mathrm{H} \rightarrow \bigcirc$

DC and
AC voltage: Nominal voltages and tolerances see
"Table 1"

Table 1:

Nominal voltages U_{N}	Tolerances
$24 \ldots 60 \mathrm{~V}$ DC / AC	$\mathrm{DC}-15 \ldots+33 \%$
$85 \ldots 230 \mathrm{~V}$ DC / AC	AC $\pm 15 \%$

(only possible with standard version, non-Ex, with electric isolation,
with AC/DC power pack
(DC and $45 \ldots 400 \mathrm{~Hz}$)

$0 . . .200 \mathrm{~Hz}$,
10 g continuous, 15 g for 2 h
5 g continuous, 10 g for 2 h
$3 \times 50 \mathrm{~g}$ every 10 impulses
in all 3 axes

Max. 1000 N (radial)
Max. 500 N (axial)
If subjected to vibration the shaft load should be as low as possible to en sure optiman

Mounting position:

Material of housing
(main part)

Material of back:

The plug-in connector consists of a socket mounted on the transmitter and plug on the end of the connecting cable (screw gland) with 7 screw terminals (wire gauges up to $1 \mathrm{~mm}^{2}$). The socket can or the front (see Fig. 8)

Steel
Finish QPQ

Plastic (polyester), when plug-in cable specified
metal (aluminium), when cable access via screw terminals and cable glands

KINAX WT 707

Transmitter for angular position
$\left.\begin{array}{llll} & & & \\ \text { Regulations } & & \text { Environmental conditions }\end{array}\right]$

Table 3: Specification and ordering information

KINAX WT 707

Transmitter for angular position

KINAX WT 707

Transmitter for angular position

*Lines with letter(s) under "no-go" cannot be combined with preceding lines having the same letter under "SCODE".

Table 4: Data on explosion protection $\langle x\rangle$ II 2 G

Order Code	Type of protection "Intrinsic safety" Marking		Certificates	Mounting location of the instrument
	Instrument	Measuring output		
707-2 ...	EEx ia IIC T6	$\begin{aligned} & U_{i}=30 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{i}}=160 \mathrm{~mA} \\ & P_{i}=1 \mathrm{~W} \\ & \mathrm{C}_{\mathrm{i}} \leq 10 \mathrm{nF} \\ & \mathrm{~L}_{\mathrm{i}}=0 \end{aligned}$	Type Examination Certificate PTB 97 ATEX 2271	Within the hazardous area
707-6...	Ex ia IIC T6		Czech republic FIZU 98 Ex 0280	

Electrical connections

2-, 3- or 4-wire connection without electric isolation

4-wire connection (different mA signals)

A = Measuring output...
... as 2-wire connection (4... 20 mA , signal in output/powering circuit)
... as 3- or 4-wire connection (different mA signals)
$H=$ DC power supply $H=12 \ldots 33 \mathrm{~V}$
resp. $\mathrm{H}=12 . .30 \mathrm{~V}$ with Ex version
$R_{\text {ext }}=$ External resistance

4-wire connection with electric isolation

4-wire connection (different mA signals)
A = Measuring output
H = AC/DC power supply
$R_{\text {ext }}=$ External resistance

Settings

Fig. 10. Position of settings.
Left: Transmitter with plug-in connector.
Right: Transmitter with screw terminals and cable glands.
ZERO = Potentiometer for zero point
SPAN = Potentiometer for measuring range end value
S1 = Switch for reversing direction of rotation for $\Varangle>150^{\circ}$.

Transmitters with the ordering code 707 - ...D (see "Table 3: Specification and ordering information") are designed for either a 2 -wire connection with an output range of $4 \ldots 20 \mathrm{~mA}$ or a 3- or 4 -wire connection with an output range of $0 . . .20 \mathrm{~mA}$.
If, however, a transmitter be changed from one to the other (see "Electrical connections"), the beginning and end of the measuring range, ZERO and SPAN must be readjusted.
A switch is provided on angular transmitters with a measuring range $>150 \Varangle^{\circ}$ for reversing the direction of rotation. It is marked S1.

Standard accessories

1 Operating Instructions in three languages: German, French, English
1 Ex approval, for instruments in Ex version only

KINAX WT 707
 Transmitter for angular position

Dimensional drawings

Fig. 11. KINAX WT 707 with plug-in connector.

Fig. 12. KINAX WT 707 with screw terminals and cable glands.

Fig. 13. KINAX WT 707 with additional gear and plug-in connector.

Fig. 14. KINAX WT 707 with additional gear, screw terminals and cable glands.

Fig. 15. KINAX WT 707 with plug-in connector and foot.

Fig. 16. KINAX WT 707 with screw terminals, cable glands and foot.

Fig. 17. KINAX WT 707 with additional gear, plug-in connector and foot.

Fig. 18. KINAX WT 707 with additional gear, screw terminals, cable glands and foot.

KINAX WT 707
 Transmitter for angular position

Fig. 19. KINAX WT 707 with plug-in connector and flange.

Fig. 20. KINAX WT 707 with screw terminals, cable glands and flange.

Fig. 21. KINAX WT 707 with additional gear, plug-in connector and flange.

Fig. 22. KINAX WT 707 with additional gear, screw terminals, cable glands and flange.

Contents

1. Read first and then 21
2. Brief description 21
3. Scope of supply 21
4. Specification and ordering information 22
5. Technical data 22
6. Mounting 24
7. Electrical connections. 24
8. Setting the beginning and end of the measuring range 27
9. Adaptation from 2-wire connection to 3 or 4-wire connection and vice versa. 27
10. Reversing the rotation for instruments with measuring ranges $>150 \Varangle^{\circ}$..... 27
11. Spare parts 28
12. Declaration of conformity 29
13. Dimensional drawings 30

1. Read first and then ...

The proper and safe operation ofthe device
assumes that the Operating Instructions
are read carefully and the safety warnings
given in the various Sections
6. Mounting
7. Electrical connections
8. Setting the beginning and end
of the measuring range
10. Reversing the rotation for
instruments with measuring
ranges 150 $女^{\circ}$
are observed.
The device should only be handled by
appropriately trained personnel who are
familiar with it and authorised to work in
electrical installations.
The instrument must only be opened to
make the electrical connections (Section
7.2), for setting the beginning and end
(Section 8) and for reversing the rotation
(Section 10).
The guarantee is no longer valid if the
instrument is further tampered with!

2. Brief description

The KINAX WT 707 converts the angular position of a shaft into a load-independent direct current signal, proportional to the angular position.

Explosion-proof"Intrinsically safe" versions with I.S. measuring output rounds off this series of transmitters.

3. Scope of supply

Transmitter, one of the twelve versions (Fig. 1)
1 Operating Instructions (Fig. 2), in three languages: German, French, English
1 Ex approval (Fig. 2), only for Ex version devices

Fig. 1

Fig. 2

4. Specification and ordering information

Significance of digits 1 . to 7 .

Order Code	707 -
1. Version of the transmitte	
Standard, Measuring output non-intrinsically safe	1
EEx ia IIC T6, ATEX Measuring output intrinsically safe	2
Ex ia IIC T6, FTZU (Czech republic), Measuring output intrinsically safe	6
2. Sense of rotation Calibrated for sense of rotation clockwise	1
Calibrated for sense of rotation counterclockwise	2
V characteristic	3
Calibrated for both senses of rotation	4
3. Measuring range (measuring input) $\Theta$$0 \ldots \quad 10 \Varangle^{\circ}$	
$0 \ldots 30 \chi^{\circ}$	2
$0 \ldots 60$ ¢ $^{\circ}$	3
$0 \ldots 90$ ¢ $^{\circ}$	4
$0 \ldots 180$ ¢ $^{\circ}$	5
$0 . .270$ ¢ $^{\circ}$	6
Non-standard $0 . . . \geq 5$ to $0 \ldots<270 \Varangle^{\circ}$	9
V characteristic	A
4. Output signal (measuring output) $0 \ldots 1 \mathrm{~mA}, 3$ or 4 -wire connection	A
$0 \ldots 5 \mathrm{~mA}, 3$ or 4-wire connection	B
$0 \ldots 10 \mathrm{~mA}, 3$ or 4-wire connection	C
4 ... 20 mA , 2-wire connection or $0 \ldots 20 \mathrm{~mA}, 3$ or 4-wire connection	D
$4 \ldots 20 \mathrm{~mA}, 3$ or 4-wire connection	E
$0 . . .20 \mathrm{~mA}$, 4-wire connection	F
Non-standard, 3 or 4-wire connection $0 \ldots>1.00 \text { to } 0 \ldots<20 \mathrm{~mA}$	Z

5. Technical data

Measuring input

Measuring ranges: $\quad 0 . . \geq 5$ to $0 \ldots \leq 270 \Varangle^{\circ}$ (without gear)

Preferred ranges
$0 . . .10,0 . . .30,0 . . .60,0 . .90$,
$0 . .180$ or $0 . . .270 \Varangle^{\circ}$
$0 . . . \geq 10 \Varangle^{\circ}$ to $0 . . .1200$ turns
(with additional gear)

Measuring output Θ

Output variable I_{A} : Load-independent DC current, proportional to the input angle

Order Code	707 -
5. Power supply 24 ... 60 V DC/AC, with electric isolation	
85 ... 230 V DC/AC, with electric isolation	2
$12 \ldots 33 \vee D C,$ without electric isolation	A
12 ... 30 V DC (Ex), without electric isolation	B
6. Mounting mode	
Without foot, without flange	0
With foot (mounted)	1
With flange (mounted)	2
7. Material of transmitter rear cover / Routing of connecting cable	
Plastic / connector less cable plug, socket mounted for cable routed to the rear	1
Plastic / connector less cable plug, socket mounted for cable routed to the front	2
Plastic / connector with cable plug, cable routed to the rear	3
Plastic / connector with cable plug, cable routed to the front	4
Metal / screw terminals and cable glands	5

Note

The remaining order code digits concern special features, e.g. the ancillary gear for extending the measuring ranges.

Standard ranges:	$\begin{aligned} & 0 \ldots 1 \mathrm{~mA} \\ & 3 \text { or 4-wire connection } \end{aligned}$
	$0 . .5 \mathrm{~mA},$ 3 or 4-wire connection
	$\begin{aligned} & 0 . . .10 \mathrm{~mA} \\ & 3 \text { or 4-wire connection } \end{aligned}$
	4... 20 mA , 2 wire connection or 0 ... $20 \mathrm{~mA}, 3$ or 4 -wire connection adjustable with potentiometer
	4... 20 mA , 3 or 4-wire connection
	0... 20 mA , 4-wire connection
Non-standard ranges:	$0 . . .>1.00$ to $0 \ldots<20 \mathrm{~mA}$ 3 or 4 -wire connection

$R_{\text {ext }} \max .[k \Omega]=\frac{12 \mathrm{~V}}{\mathrm{I}_{\mathrm{A}}[\mathrm{mA}]}$
(for instruments with
DC/AC power supply by AC/DC power pack, with electric isolation)
$\mathrm{R}_{\text {ext }} \max .[\mathrm{k} \Omega]=\frac{\mathrm{H}[\mathrm{V}]-12[\mathrm{~V}]}{\mathrm{I}_{\mathrm{A}}[\mathrm{mA}]}$
(for instruments with
DC power supply,
without electric isolation)
$I_{A}=$ Output signal end value

Accuracy

Reference value:	Measuring range
Basic accuracy:	Limit of error $\leq 0.5 \%$ for ranges
	$0 \ldots \leq 150 \Varangle^{\circ}$
	Limit of error $\leq 1.5 \%$ for ranges
	from $0 \ldots>150$ to $0 . . .270 \Varangle^{\circ}$

Power supply $\mathrm{H} \rightarrow \bigcirc$

DC and
AC voltage: \quad Nominal voltages and tolerances see "Table 1"

Table 1:

Nominal voltages U_{N}	Tolerances
$24-60$ V DC / AC	DC -15 to $+33 \%$
$85-230$ V DC / AC	AC $\pm 15 \%$

(only possible with standard version, non-Ex, with electric isolation, with $A C / D C$ power pack (DC and $45 \ldots 400 \mathrm{~Hz}$)

DC voltage only ${ }^{1}$:
$12 . .33 \mathrm{~V}$
(possible with standard version, non-Ex, without electric isolation)

12... 30 V

(necessary with Ex version, type of protection "Intrinsic safety" EEx ia IIC T6, without electric isolation)

Max. residual ripple: 10% p.p.
Max. current
cosumption:
Approx. $5 \mathrm{~mA}+\mathrm{I}_{\mathrm{A}}$

Mechanical withstand

Permissible vibration:
(without addit. gear): 0.200 Hz
10 g continuous, 15 g for 2 h
$200 . . .500 \mathrm{~Hz}$, 5 g continuous, 10 g for 2 h

Shock: $\quad 3 \times 50$ g every 10 impulses
in all 3 axes

Permissible static load on the shaft:

Max. 1000 N (radial)
Max. 500 N (axial)
If subjected to vibration the shaft load should be as low as possible to ensure optimum life of the bearing

Mounting position: Any
Material

Housing (main part):	Steel Finish QPQ (nitro-carbonated)
Rear (cover):	Plastic (polyester), when plug-in cable specified or metal (aluminium), when cable access via screw terminals and cable glands
Plug-in connector:	Plastic
Cable glands:	Metal
Regulations	
Test voltage:	$2.2 \mathrm{kVeff}, 50 \mathrm{~Hz}, 1 \mathrm{~min}$. between... ... power supply and housing ... power supply and measuring output (with DC/AC power supply, with electric isolation) 500 Veff, $50 \mathrm{~Hz}, 1 \mathrm{~min}$. all electrical connections against housing (with DC power supply, without electric isolation)
Housing protection:	IP 66 acc. to EN 60529

Environmental conditions

Climatic rating: Standard version
Temperature - 25 to $+70^{\circ} \mathrm{C}$
Annual mean relative humidity <90\%
or
Version with improved climatic rating
Temperature -40 to $+70^{\circ} \mathrm{C}$
Annual mean relative humditiy
<95\%
Ex version
Temperature -40 to $+60^{\circ} \mathrm{C}$ at T6
resp. -40 to $+75^{\circ} \mathrm{C}$ at T 5
Transportation and
storage temperature: -40 to $80^{\circ} \mathrm{C}$
Altitude: $\quad 2000 \mathrm{~m}$ max.

6. Mounting

The twelve versions of the transmitter differ in their mechanical design. Four of them are intended for mounting directly on the device being measured. The others are equipped with a mounting bracket or a flange. The relationship between the three types of mounting, or more precisely the corresponding cut-out diagrams and the different versions of the transmitter can be seen from Table 2.

Table 2:

The M6screws are needed for the "directly" mounted versions and four M8 nuts and bolts for those "with a bracket" or "with a flange". The screws, respectively nuts and bolts are not supplied, because the required length varies according to the thickness of the mounting surface.

When deciding where to install the transmitter (measuring location), take care that the ambient conditions given in Section 5 "Technical data" are not exceeded.

When installing or servicing intrinsically safe (Ex) instruments with enclosure made from synthetic material, care must be taken to avoid electrostatic charges.

Make the cut-out or drill the holes in the item onto which the transmitter is to be mounted according to the corresponding drilling and cut-out diagram given in Table 2 and then fit the transmitter.

Pay attention when aligning and tightening the transmitter that the electrical zero and the zero of the item being measured coincide.

The holes in the mounting bracket and the flange are elongated for this purpose and permit the transmitter to be rotated in order to adjust the electrical zero to coincide with the zero of the measured device.

Similarly, it is advisable to elongate the three holes (6.5 mm diam.) drilled for "directly" mounted versions (see upper drilling and cut-out diagram in Table 2).
The electrical zero of the transmitter is marked on the end of the shaft and on the outside of the casing (see diagrams):

- left for rotation transmitters with the range of 0 to $\ldots \Varangle^{\circ}$
- right for rotation transmitters with V characteristic ranges.

7. Electrical connections

Either a plug-in connector or screw terminals and cable glands are provided for making the electrical connections to the transmitter. Of the twelve versions of the transmitter, six have connectors and six screw terminals and cable gland (see Table 2).

Make sure that the cables are not live when making the connections!
The 230 V power supply is potentially dangerous!

Also note that, ...
... the data required to carry out the prescribed measurement must correspond to those marked on the nameplate (Fig. 3) of the KINAX WT 707 $(\Theta$ measuring input, Θ measuring output,
 power supply)!
... the total loop resistance connected to the output (receiver plus leads) does not exceed the maximum permissible value $R_{\text {ext }}$ See "Measuring output" in Section 5 "Technical data" for the maximum values of $R_{\text {ext }}$!
... twisted cores must be use for the measured variable input and output leads and routed as far away as possible from power cables!
In all other respects, observe all local regulations when selecting the type of electrical cable and installing them!
In the case of "Intrinsically safe" explosionproof versions with I.S. measuring output, the supplementary information given on the Ex approval and also local regulations applicable to electrical installations in explosion hazard areas must be taken into account!

Fig. 3. Example of a nameplate.

7.1 Connecting transmitters with plug-in connector

The plug-in connector (1) consists of a socket (1.1) mounted on the rear (2) of the transmitter and plug (1.2) on the end of the connecting cable (screw gland PG 11) and 7 screw terminals (wire gauges up to max. $1 \mathrm{~mm}^{2}$). The socket can be mounted so that the cable is routed to either the rear (Fig. 4, left) or the front (Fig. 4, right).

Fig. 4. Rear (2) with plug-in connector (1).
Left: Plug-in connector routed to rear.
Right: Plug-in connector routed to front.

Slightly lift the spring latch (1.6) and remove the cover (1.4) from the body (1.5) of the connector casing.

Fig. 5. Plug (1.2).

Fig 6
Strip the leads as shown in Fig. 6. Pass the leads through the gland nut (1.7) pinch ring (1.8) and seal (1.9). Insert the leads into the body. Connect the cores according to the respective wiring diagram (Fig. 7 or 8).
Push the seal and the pinch ring which are loose on the leads into the body. Fit and tighten the gland nut on the body.
Align the seal (1.10) on the sealing surface of the body. Reassemble the cover and the body and press the cover into place until the latch (1.6) audibly clicks.
Finally, insert the connector into the socket plug at the rear of the transmitter.

Fig. 7. Connection diagrams for 2,3 or 4-wire connection, without electric isolation, DC power supply.

Fig. 8. Connection diagram for 4-wire connection, with electric isolation, DC/AC power supply.

7.2 7.2 Connecting transmitter with screw terminals and cable glands

In the case of transmitters fitted with screw terminals and cable glands, there are 4 screw terminals (4.1) plus 1 ground terminal (4.2) which are accessible after removing the cover (3.1) (see Fig. 9). The maximum wire gauge the terminals can accept is $1.5 \mathrm{~mm}^{2}$.

Fig. 9. Rear (3) with terminals (4.1) and (4.2) and cable glands (4).
Left: Cover (3.1) closed.
Right: Exposed.

Remove the 3 screws (3.2) and take off the cover (3.1).
Undo the gland nut and remove the pinch ring and seal from the gland opening. Place these parts over the cable in the correct order and pass the end of the cable through the gland hole into the rear of the transmitter.

Strip the insulation from a suitable length of the leads and connect them to the terminals (4.1) and (4.2) according to the respective wiring diagram (Fig. 10 or 11).

Then fit the gland seal, pinch ring and nut. Tighten the gland nut and replace the cover.

Fig. 10. Connection diagrams for 2,3 or 4 -wire connection, without electric isolation, DC power supply.

4-wire connection (different mA-signals)
A = Measuring output
H = DC/AC power supply
$\mathrm{R}_{\text {ext }}=$ External resistance
Fig. 11. Connection diagram for 4-wire connection, with electric isolation, DC/AC power supply.

8. Setting the beginning and end of the measuring range

The coarse adjustment of the beginning of the measuring range consists in aligning the zero of the measured device with the external zero mark on the transmitter. The procedure was described in Section 6 "Mounting". This Section concerns the fine adjustment not only of the beginning of the range (ZERO), but also of the end of the scale (SPAN).

Firstly, switch on the power supply to the transmitter.

For versions ...

... with plug-in connector remove the ZERO/SPAN sealing screws (2.2) (Fig. 12, left).
... with screw terminals and cable glands, remove the 3 screws (3.2) and the cover (3.1) (Fig. 9, left).

Caution! The screw terminals (4.1) are live.
The 230 V power supply is potentially dangerous!

Place the measured device at its zero position, i.e. the position at which the KINAX WT 707 should produce 0 mA (three or four-wire connection), respectively 4 mA (two-wire connection) at its output.
Should the output current differ by more than 2% from its initial value, repeat the coarse zero setting procedure described in Section 6 "Mounting".
Then adjust the "ZERO" potentiometer (Fig. 12, right or Fig. 13) using a watchmaker's screwdriver (2.3 mm diam.) so that the desired output current flows.

Fig. 12. Rear (2) of the transmitter with the adjustments "ZERO", "SPAN" and "S1".
Left: Adjustments covered by the sealing screw (2.2).
Right: Adjustments exposed.

Fig. 13. Rear (3) of the transmitter with the adjustments "ZERO", "SPAN" and "S1".

Now rotate the measured device to its opposite limit position, i.e. the position at which the KINAX WT 707 should produce the prescribed full-scale output current (see rating plate).

Adjust the "SPAN" potentiometer with the screwdriver as before until precisely the prescribed full-scale output current is measured at the output.

Then recheck the zero point and correct on the ZERO potentiometer if necessary. Check the full-scale value again. Repeat both adjustments until both zero point and full-scale value are precise.

9. Adaptation from 2-wire connection to 3 or 4-wire connection and vice versa

Transmitters with the ordering code 707 - ...D (see Section 4 "Specification and ordering information") are designed for either a two-wire connection with an output range of 4 ... 20 mA or a three or four-wire connection with an output range of $0 . . .20 \mathrm{~mA}$.

If, however, a transmitter be changed from one to the other (see wiring diagrams in Fig. 7 and 10), the beginning and end of the measuring range must be readjusted.

10. Reversing the rotation for instruments with measuring ranges $150 \Varangle^{\circ}$

A switch is provided on angular transmitters with a measuring range $>150 \Varangle^{\circ}$ for reversing the direction of rotation. It is marked S1 (Fig. 12 and Fig. 13).
At the version ...
... with plug-in connector remove the S1 sealing screw (2.2) (Fig. 12, left).
... with screw terminals and cable glands, remove the 3 screws (3.2) and the cover (3.1) (Fig. 9, left).

| Caution! The screw terminals (4.1) |
| :--- | :--- |
| are live. |
| The 230 V power supply is potentially |
| dangerous! |

Then operate the switch by turning it a quarter of a turn with a watchmakers screwdriver (2.3 mm diam.) and reset the beginning and end of the measuring range.

Attention! In instruments with measuring range less than $150 \Varangle^{\circ}$ the switch S1 is not existing.

Forcing a watchmaker's screwdriver into the opening will damage the PCB.

11. Spare parts

11.1 Parts common to both versions, i.e. with plugin connector and with screw terminals and cable glands
\(\left.$$
\begin{array}{|l|c|}\hline \text { Description }{ }^{1} & \text { Order No } \\
\hline \begin{array}{l}\text { Foot } \\
\text { for fixing the KINAX WT } 707 \text { with } \ldots\end{array}
$$ \& 997182

\quad ··· 3 hexagon bolts M6 \times 30

\quad ··· 3 spring washers B6

\quad ··· 3 washers 6.4 / 12.5 \times 1.6\end{array}\right]\)| Flange
 for fixing the KINAX WT 707 with \ldots
 $\quad \ldots 3$ Allen socket screws, M6 $\times 20$
 $\quad \ldots 3$ spring washers B6
 $\quad \ldots 3$ washers $6.4 / 12.5 \times 1.6$ |
| :--- |
| Seal
 between rear (2) or (3) (cover)
 and housing (main part)
 as O ring 94.97×1.78 |

11.2 Parts only for versions with plug-in connectors

Description ${ }^{1}$	Order No
Rear (2) (cover) in plastic, black, without securing screws, connector (1) and sealing screws (2.2)	988454
Rear (2) (cover) in plastic, blue (for Ex version), without securing screws, connector (1) and sealing screws (2.2)	988909
Plug (1.1) with leads to the measuring transmitter, without connector case (1.2) and securing screws	988785
4 securing screws K30 $\times 9.5$, for fixing the plug (1.1)	982216
Connector case (1.2) without plug (1.1)	988470
Set of securing parts and seals consisting of 3 Philips screws $2 \times \mathrm{M} 6 \times 25$, $1 \times \mathrm{M} 6 \times 12$, for fixing the rear (2) ... 3 sealing rings for Philips screws above ... 4 securing screws $\mathrm{K} 30 \times 9.5$, for fixing the plug (1.1) ... 3 sealing screws (2.2) M5 $\times 10$, for covering the ZERO, SPAN and S 1 settings	996879

Description ${ }^{1}$	Order No
Switching supply unit $24 \ldots 60$ V DC/AC, not moulded, with socket	988420
$85 \ldots 230$ V DC/AC, not moulded, with socket	988462
$24 \ldots 60$ V DC/AC, moulded, with socket	991978
$85 \ldots 230$ V DC/AC, moulded, with socket	991986

11.3 Parts only for versions with screw terminals and cable glands

Description ${ }^{1}$	Order No
Rear (3) (cover) in metal (aluminium), black, without securing screws, cover (3.1) and cable glands (4)	995300
Rear (3) (cover) in metal (aluminium), black, with securing screws (3 small-headed cylindric screws M6 $\times 10$), without cover (3.1) and cable glands (4)	997231
Cover (3.1) for rear (3) with flat cover seal ... 3 lens-headed screws $\mathrm{M} 4 \times 12$... 3 screw sealing rings ... 30 rings CR 3.0×1 for screws	997207
Switching supply unit 24 ... 60 V DC/AC, not moulded, and connecting PCB with 4 screw terminals (4.1)	995425
85 ... 230 V DC/AC, not moulded, and connecting PCB with 4 screw terminals (4.1)	994815
24 ... 60 V DC/AC, moulded, and connecting PCB with 4 screw terminals (4.1)	995508
85 ... 230 V DC/AC, moulded, and connecting PCB with 4 screw terminals (4.1)	994823
Connecting PCB with 4 screw terminals on its own (4.1)	995433

11.4 Complete conversion kits

Description	Order No
Rear of the transmitter (cover) in plastic, black, with connector (only for instruments in standard version)	137043
Rear of the transmitter (cover) metal/screw terminals and cable glands (only for instruments in standard version)	137069

[^0] EG - KONFORMITÄTSERKLÄRUNG
DECLARATION OF CONFORMITY

Dokument-Nr./
WT707.DOC
Document. No.:

Hersteller/
Manufacturer:
Camille Bauer AG

Anschrift /
Switzerland
Aargauerstrasse 7
Address:
CH-5610 Wohlen

Messumformer für Drehwinkel
Transmitter for angular position
Typ / Type:

KINAX WT 707

Dis bezeichnete Produkt stimmt mit den Vorschriften folgender Europäischer Richtlinien überein, nachgewiesen durch die Einhaltung folgender Normen:

The above mentioned product has been manufactured according to the regulations of the following European directives proven through compliance with the following standards:

Die explosionsgeschützte Ausführung dieses Produkts stimmt mit der Europäischen Richtlinie 94/9/EG überein.

The explosion protected variant of this product has been manufactured according the European directive 94/9.

Ort, Datum /
Place, date:
Wohlen, den 24. August 2000
Unterschrift /

Signature:

M.Ulrich

Leiter Entwicklung

[^1]

KINAX WT 707 mit Steckverbinder und Fuss. KINAX WT 707 avec connecteur à fiche et pied. KINAX WT 707 with plug-in connector and foot.	
KINAX WT 707 mit Schraubklemmen sowie Stopfbuchsen und Fuss. KINAX WT 707 avec bornes à vis, ainsi que presse-étoupes et pied. KINAX WT 707 with screw terminals, cable glands and foot.	
KINAX WT 707 mit Zusatzgetriebe, Steckverbinder und Fuss. KINAX WT 707 avec engrenage additionnel, connecteur à fiche et pied. KINAX WT 707 with additional gear, plug-in connector and foot.	
KINAX WT 707 mit Zusatzgetriebe, Schraubklemmen sowie Stopfbuchsen und Fuss. KINAX WT 707 avec engrenage additionnel, bornes à vis, ainsi que presse-étoupes et pied. KINAX WT 707 with additional gear, screw terminals, cable glands and foot.	

[^0]: ${ }^{1}$ The numbers in brackets, e.g. (1.1), are item numbers used in the
 figures and text above.

[^1]: This declaration certifies compliance with the above mentioned directives but does not include a property assurance.
 The safety notes given in the product documentations, which are part of the supply, must be observed.

